BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32090941)

  • 1. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics.
    Li DS; Avazmohammadi R; Merchant SS; Kawamura T; Hsu EW; Gorman JH; Gorman RC; Sacks MS
    J Mech Behav Biomed Mater; 2020 Mar; 103():103508. PubMed ID: 32090941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium.
    Avazmohammadi R; Li DS; Leahy T; Shih E; Soares JS; Gorman JH; Gorman RC; Sacks MS
    Biomech Model Mechanobiol; 2018 Feb; 17(1):31-53. PubMed ID: 28861630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical properties and microstructure of human ventricular myocardium.
    Sommer G; Schriefl AJ; Andrä M; Sacherer M; Viertler C; Wolinski H; Holzapfel GA
    Acta Biomater; 2015 Sep; 24():172-92. PubMed ID: 26141152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-scale computational model for the passive mechanical behavior of right ventricular myocardium.
    Li DS; Mendiola EA; Avazmohammadi R; Sachse FB; Sacks MS
    J Mech Behav Biomed Mater; 2023 Jun; 142():105788. PubMed ID: 37060716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel constitutive model for passive right ventricular myocardium: evidence for myofiber-collagen fiber mechanical coupling.
    Avazmohammadi R; Hill MR; Simon MA; Zhang W; Sacks MS
    Biomech Model Mechanobiol; 2017 Apr; 16(2):561-581. PubMed ID: 27696332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right ventricular myocardial mechanics: Multi-modal deformation, microstructure, modeling, and comparison to the left ventricle.
    Kakaletsis S; Meador WD; Mathur M; Sugerman GP; Jazwiec T; Malinowski M; Lejeune E; Timek TA; Rausch MK
    Acta Biomater; 2021 Mar; 123():154-166. PubMed ID: 33338654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment.
    Cansız FB; Dal H; Kaliske M
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A viscoelastic model for human myocardium.
    Nordsletten D; Capilnasiu A; Zhang W; Wittgenstein A; Hadjicharalambous M; Sommer G; Sinkus R; Holzapfel GA
    Acta Biomater; 2021 Nov; 135():441-457. PubMed ID: 34487858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive mechanical properties in healthy and infarcted rat left ventricle characterised via a mixture model.
    Martonová D; Alkassar M; Seufert J; Holz D; Dương MT; Reischl B; Friedrich O; Leyendecker S
    J Mech Behav Biomed Mater; 2021 Jul; 119():104430. PubMed ID: 33780851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium.
    Sommer G; Haspinger DCh; Andrä M; Sacherer M; Viertler C; Regitnig P; Holzapfel GA
    Ann Biomed Eng; 2015 Oct; 43(10):2334-48. PubMed ID: 25707595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the dispersion in electromechanically coupled myocardium.
    Eriksson TS; Prassl AJ; Plank G; Holzapfel GA
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1267-84. PubMed ID: 23868817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness.
    Ren M; Ong CW; Buist ML; Yap CH
    J Mech Behav Biomed Mater; 2022 Oct; 134():105383. PubMed ID: 35932646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive modelling of passive myocardium: a structurally based framework for material characterization.
    Holzapfel GA; Ogden RW
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3445-75. PubMed ID: 19657007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Three-Dimensional Mechanical Behavior of Human Breast Tissue.
    Goodbrake C; Li DS; Aghakhani H; Contreras A; Reece GP; Markey MK; Sacks MS
    Ann Biomed Eng; 2022 May; 50(5):601-613. PubMed ID: 35316441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling.
    Ahmad F; Soe S; Albon J; Errington R; Theobald P
    Acta Biomater; 2023 Nov; 171():166-192. PubMed ID: 37797709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.
    Muehlhausen MP; Janoske U; Oertel H
    Cardiovasc Eng Technol; 2015 Mar; 6(1):8-18. PubMed ID: 26577098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking with Biaxial Testing.
    Park DW; Sebastiani A; Yap CH; Simon MA; Kim K
    PLoS One; 2016; 11(10):e0165320. PubMed ID: 27780271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.