BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32090941)

  • 21. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics.
    Lazarus A; Dalton D; Husmeier D; Gao H
    Biomech Model Mechanobiol; 2022 Jun; 21(3):953-982. PubMed ID: 35377030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo estimation of passive biomechanical properties of human myocardium.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    Med Biol Eng Comput; 2018 Sep; 56(9):1615-1631. PubMed ID: 29479659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Contemporary Look at Biomechanical Models of Myocardium.
    Avazmohammadi R; Soares JS; Li DS; Raut SS; Gorman RC; Sacks MS
    Annu Rev Biomed Eng; 2019 Jun; 21():417-442. PubMed ID: 31167105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressibility and Anisotropy of the Ventricular Myocardium: Experimental Analysis and Microstructural Modeling.
    McEvoy E; Holzapfel GA; McGarry P
    J Biomech Eng; 2018 Aug; 140(8):. PubMed ID: 30003247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parameter estimation in a Holzapfel-Ogden law for healthy myocardium.
    Gao H; Li WG; Cai L; Berry C; Luo XY
    J Eng Math; 2015; 95(1):231-248. PubMed ID: 26663931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructurally Motivated Constitutive Modeling of Heart Failure Mechanics.
    Hasaballa AI; Wang VY; Sands GB; Wilson AJ; Young AA; LeGrice IJ; Nash MP
    Biophys J; 2019 Dec; 117(12):2273-2286. PubMed ID: 31653449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of left ventricular parameters based on deep learning method.
    Cai L; Jiao J; Ma P; Xie W; Wang Y
    Math Biosci Eng; 2022 Apr; 19(7):6638-6658. PubMed ID: 35730275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Strain Energy Function Representing the Passive Behavior of the Myocardium.
    Hussein TM; Criscione JC
    J Biomech Eng; 2023 Nov; 145(11):. PubMed ID: 37338238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Modeling of Healthy Myocardium in Diastole.
    Nikou A; Dorsey SM; McGarvey JR; Gorman JH; Burdick JA; Pilla JJ; Gorman RC; Wenk JF
    Ann Biomed Eng; 2016 Apr; 44(4):980-92. PubMed ID: 26215308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of a constitutive relation for passive myocardium: II. Parameter estimation.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive capabilities of various constitutive models for arterial tissue.
    Schroeder F; Polzer S; Slažanský M; Man V; Skácel P
    J Mech Behav Biomed Mater; 2018 Feb; 78():369-380. PubMed ID: 29220821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of affine fiber kinematics in porcine tricuspid valve leaflets using polarized spatial frequency domain imaging and planar biaxial testing.
    Ross CJ; Mullins BT; Hillshafer CE; Mir A; Burkhart HM; Lee CH
    J Biomech; 2021 Jun; 123():110475. PubMed ID: 34004393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
    Pineda-Castillo SA; Aparicio-Ruiz S; Burns MM; Laurence DW; Bradshaw E; Gu T; Holzapfel GA; Lee CH
    Acta Biomater; 2022 Sep; 150():295-309. PubMed ID: 35905825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole.
    Wang HM; Luo XY; Gao H; Ogden RW; Griffith BE; Berry C; Wang TJ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):99-113. PubMed ID: 23609894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response.
    Cosentino F; Sherifova S; Sommer G; Raffa G; Pilato M; Pasta S; Holzapfel GA
    Acta Biomater; 2023 Oct; 169():107-117. PubMed ID: 37579911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.