These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 32090998)
1. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics. Zhang N; Friend J J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate. Mei J; Zhang N; Friend J J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169 [TBL] [Abstract][Full Text] [Related]
3. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
4. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate. Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058 [TBL] [Abstract][Full Text] [Related]
5. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics. Travagliati M; Shilton R; Beltram F; Cecchini M J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515 [TBL] [Abstract][Full Text] [Related]
6. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
7. Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz-Order Surface Acoustic Waves. Zhang N; Horesh A; Friend J Adv Sci (Weinh); 2021 Jul; 8(13):2100408. PubMed ID: 34258166 [TBL] [Abstract][Full Text] [Related]
8. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018 [TBL] [Abstract][Full Text] [Related]
9. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
10. Optimal selection of piezoelectric substrates and crystal cuts for SAW-based pressure and temperature sensors. Zhang X; Wang FY; Li L IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1207-16. PubMed ID: 17571819 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and surface acoustic wave properties of AlN films deposited on LiNbO3 substrates. Kao KS; Cheng CC; Chen YC IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):345-9. PubMed ID: 12322884 [TBL] [Abstract][Full Text] [Related]
14. Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice. Yudistira D; Janner D; Benchabane S; Pruneri V Opt Lett; 2009 Oct; 34(20):3205-7. PubMed ID: 19838274 [TBL] [Abstract][Full Text] [Related]
15. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB. Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460 [TBL] [Abstract][Full Text] [Related]
17. Thermal Control Design and Packaging for Surface Acoustic Wave Devices in Acoustofluidics. Han J; Yang F; Hu H; Huang Q; Lei Y; Li M IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):386-398. PubMed ID: 34329161 [TBL] [Abstract][Full Text] [Related]
18. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor. El Gowini MM; Moussa WA Sensors (Basel); 2010; 10(2):1232-50. PubMed ID: 22205865 [TBL] [Abstract][Full Text] [Related]
19. Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lin SC; Mao X; Huang TJ Lab Chip; 2012 Aug; 12(16):2766-70. PubMed ID: 22781941 [TBL] [Abstract][Full Text] [Related]
20. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells. Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]