BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32090998)

  • 1. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M; Shilton R; Beltram F; Cecchini M
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz-Order Surface Acoustic Waves.
    Zhang N; Horesh A; Friend J
    Adv Sci (Weinh); 2021 Jul; 8(13):2100408. PubMed ID: 34258166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal selection of piezoelectric substrates and crystal cuts for SAW-based pressure and temperature sensors.
    Zhang X; Wang FY; Li L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1207-16. PubMed ID: 17571819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniaturized Lab-on-a-Disc (miniLOAD).
    Glass NR; Shilton RJ; Chan PP; Friend JR; Yeo LY
    Small; 2012 Jun; 8(12):1881-8. PubMed ID: 22488691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency surface acoustic waves excited on thin-oriented LiNbO3 single-crystal layers transferred onto silicon.
    Pastureaud T; Solal M; Biasse B; Aspar B; Briot JB; Daniau W; Steichen W; Lardat R; Laude V; Laëns A; Friedt JM; Ballandras S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):870-6. PubMed ID: 17441597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and surface acoustic wave properties of AlN films deposited on LiNbO3 substrates.
    Kao KS; Cheng CC; Chen YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):345-9. PubMed ID: 12322884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice.
    Yudistira D; Janner D; Benchabane S; Pruneri V
    Opt Lett; 2009 Oct; 34(20):3205-7. PubMed ID: 19838274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB.
    Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X
    Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting.
    Collins DJ; Neild A; Ai Y
    Lab Chip; 2016 Feb; 16(3):471-9. PubMed ID: 26646200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Control Design and Packaging for Surface Acoustic Wave Devices in Acoustofluidics.
    Han J; Yang F; Hu H; Huang Q; Lei Y; Li M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):386-398. PubMed ID: 34329161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.
    El Gowini MM; Moussa WA
    Sensors (Basel); 2010; 10(2):1232-50. PubMed ID: 22205865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface acoustic wave (SAW) acoustophoresis: now and beyond.
    Lin SC; Mao X; Huang TJ
    Lab Chip; 2012 Aug; 12(16):2766-70. PubMed ID: 22781941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.