These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 32091033)
1. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Monteiro MV; Gaspar VM; Ferreira LP; Mano JF Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033 [TBL] [Abstract][Full Text] [Related]
2. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
3. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Monteiro MV; Gaspar VM; Mendes L; Duarte IF; Mano JF Small Methods; 2021 May; 5(5):e2001207. PubMed ID: 34928079 [TBL] [Abstract][Full Text] [Related]
4. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. Kundu B; Bastos ARF; Brancato V; Cerqueira MT; Oliveira JM; Correlo VM; Reis RL; Kundu SC ACS Appl Mater Interfaces; 2019 Apr; 11(16):14548-14559. PubMed ID: 30943004 [TBL] [Abstract][Full Text] [Related]
5. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Ferreira LP; Gaspar VM; Mano JF Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385 [TBL] [Abstract][Full Text] [Related]
6. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Ferreira LP; Gaspar VM; Mendes L; Duarte IF; Mano JF Biomaterials; 2021 Aug; 275():120983. PubMed ID: 34186236 [TBL] [Abstract][Full Text] [Related]
7. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Pradhan S; Clary JM; Seliktar D; Lipke EA Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665 [TBL] [Abstract][Full Text] [Related]
8. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
9. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Hill L; Bruns J; Zustiak SP Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694 [TBL] [Abstract][Full Text] [Related]
10. Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Monteiro CF; Custódio CA; Mano JF Acta Biomater; 2021 Oct; 134():204-214. PubMed ID: 34303015 [TBL] [Abstract][Full Text] [Related]
11. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Ferreira LP; Gaspar VM; Mano JF Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Ananthanarayanan B; Kim Y; Kumar S Biomaterials; 2011 Nov; 32(31):7913-23. PubMed ID: 21820737 [TBL] [Abstract][Full Text] [Related]
13. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Pavlou M; Shah M; Gikas P; Briggs T; Roberts SJ; Cheema U Acta Biomater; 2019 Sep; 96():247-257. PubMed ID: 31302294 [TBL] [Abstract][Full Text] [Related]
14. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Yue X; Nguyen TD; Zellmer V; Zhang S; Zorlutuna P Biomaterials; 2018 Jul; 170():37-48. PubMed ID: 29653286 [TBL] [Abstract][Full Text] [Related]
15. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Loessner D; Stok KS; Lutolf MP; Hutmacher DW; Clements JA; Rizzi SC Biomaterials; 2010 Nov; 31(32):8494-506. PubMed ID: 20709389 [TBL] [Abstract][Full Text] [Related]
16. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel. Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485 [TBL] [Abstract][Full Text] [Related]
17. Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro. Singh N; Patel K; Navalkar A; Kadu P; Datta D; Chatterjee D; Mukherjee S; Shaw R; Gahlot N; Shaw A; Jadhav S; Maji SK Biomaterials; 2023 Apr; 295():122032. PubMed ID: 36791521 [TBL] [Abstract][Full Text] [Related]
18. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation. Singh M; Close DA; Mukundan S; Johnston PA; Sant S Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587 [TBL] [Abstract][Full Text] [Related]
19. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
20. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]