These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 32091033)
21. Three-Dimensional Aggregated Spheroid Model of Hepatocellular Carcinoma Using a 96-Pillar/Well Plate. Lee SY; Teng Y; Son M; Ku B; Hwang HJ; Tergaonkar V; Chow PK; Lee DW; Nam DH Molecules; 2021 Aug; 26(16):. PubMed ID: 34443536 [TBL] [Abstract][Full Text] [Related]
22. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
23. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect. Deng S; Zhu Y; Zhao X; Chen J; Tuan RS; Chan HF Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34587587 [TBL] [Abstract][Full Text] [Related]
24. Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids. Ferreira LP; Gaspar VM; Monteiro MV; Freitas B; Silva NJO; Mano JF J Control Release; 2021 Mar; 331():85-102. PubMed ID: 33388341 [TBL] [Abstract][Full Text] [Related]
25. Integrative Abdelrahim AA; Hong S; Song JM Anal Chem; 2022 Oct; 94(40):13936-13943. PubMed ID: 36167500 [TBL] [Abstract][Full Text] [Related]
26. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Jiang T; Zhao J; Yu S; Mao Z; Gao C; Zhu Y; Mao C; Zheng L Biomaterials; 2019 Jan; 188():130-143. PubMed ID: 30343256 [TBL] [Abstract][Full Text] [Related]
27. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids. Baker AEG; Tam RY; Shoichet MS Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808 [TBL] [Abstract][Full Text] [Related]
28. Extracellular matrix production and oxygen diffusion regulate chemotherapeutic response in osteosarcoma spheroids. Sagheb IS; Coonan TP; Randall RL; Griffin KH; Leach JK Cancer Med; 2024 Sep; 13(18):e70239. PubMed ID: 39300969 [TBL] [Abstract][Full Text] [Related]
29. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266 [TBL] [Abstract][Full Text] [Related]
30. Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche. Bassi G; Panseri S; Dozio SM; Sandri M; Campodoni E; Dapporto M; Sprio S; Tampieri A; Montesi M Sci Rep; 2020 Dec; 10(1):22294. PubMed ID: 33339857 [TBL] [Abstract][Full Text] [Related]
31. Embedded bioprinted multicellular spheroids modeling pancreatic cancer bioarchitecture towards advanced drug therapy. Wei X; Wu Y; Chen K; Wang L; Xu M J Mater Chem B; 2024 Feb; 12(7):1788-1797. PubMed ID: 38268422 [TBL] [Abstract][Full Text] [Related]
32. Enhancing the Three-Dimensional Structure of Adherent Gingival Fibroblasts and Spheroids via a Fibrous Protein-Based Hydrogel Cover. Kaufman G; Nunes L; Eftimiades A; Tutak W Cells Tissues Organs; 2016; 202(5-6):343-354. PubMed ID: 27578009 [TBL] [Abstract][Full Text] [Related]
33. Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carvalho MP; Costa EC; Miguel SP; Correia IJ Carbohydr Polym; 2016 Oct; 150():139-48. PubMed ID: 27312623 [TBL] [Abstract][Full Text] [Related]
34. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Liang Y; Jeong J; DeVolder RJ; Cha C; Wang F; Tong YW; Kong H Biomaterials; 2011 Dec; 32(35):9308-15. PubMed ID: 21911252 [TBL] [Abstract][Full Text] [Related]
35. Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening. Huang B; Wei X; Chen K; Wang L; Xu M Int J Bioprint; 2023; 9(3):676. PubMed ID: 37273977 [TBL] [Abstract][Full Text] [Related]
36. Impact of hydrogel biophysical properties on tumor spheroid growth and drug response. Cameron AP; Gao S; Liu Y; Zhao CX Biomater Adv; 2023 Jun; 149():213421. PubMed ID: 37060634 [TBL] [Abstract][Full Text] [Related]
37. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Li Y; Khuu N; Prince E; Tao H; Zhang N; Chen Z; Gevorkian A; McGuigan AP; Kumacheva E Biomacromolecules; 2021 Feb; 22(2):419-429. PubMed ID: 33136364 [TBL] [Abstract][Full Text] [Related]
38. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Hong S; Song JM Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182 [TBL] [Abstract][Full Text] [Related]
39. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. Cai G; Li X; Lin SS; Chen SJ; Rodgers NC; Koning KM; Bi D; Liu AP Acta Biomater; 2024 Apr; 179():192-206. PubMed ID: 38490482 [TBL] [Abstract][Full Text] [Related]
40. RGD-mimetic poly(amidoamine) hydrogel for the fabrication of complex cell-laden micro constructs. Tocchio A; Martello F; Tamplenizza M; Rossi E; Gerges I; Milani P; Lenardi C Acta Biomater; 2015 May; 18():144-54. PubMed ID: 25724444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]