These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 32091159)
1. Ten-Gram-Scale Facile Synthesis of Organogadolinium Complex Nanoparticles for Tumor Diagnosis. Wei Z; Jiang Z; Pan C; Xia J; Xu K; Xue T; Yuan B; Akakuru OU; Zhu C; Zhang G; Mao Z; Qiu X; Wu A; Shen Z Small; 2020 Mar; 16(11):e1906870. PubMed ID: 32091159 [TBL] [Abstract][Full Text] [Related]
2. Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors. Shen Z; Fan W; Yang Z; Liu Y; Bregadze VI; Mandal SK; Yung BC; Lin L; Liu T; Tang W; Shan L; Liu Y; Zhu S; Wang S; Yang W; Bryant LH; Nguyen DT; Wu A; Chen X Small; 2019 Oct; 15(41):e1903422. PubMed ID: 31448577 [TBL] [Abstract][Full Text] [Related]
3. Facile Synthesis of Weakly Ferromagnetic Organogadolinium Macrochelates-Based T Lu Y; Liang Z; Feng J; Huang L; Guo S; Yi P; Xiong W; Chen S; Yang S; Xu Y; Li Y; Chen X; Shen Z Adv Sci (Weinh); 2022 Nov; 10(1):e2205109. PubMed ID: 36377432 [TBL] [Abstract][Full Text] [Related]
4. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Shen Z; Liu T; Yang Z; Zhou Z; Tang W; Fan W; Liu Y; Mu J; Li L; Bregadze VI; Mandal SK; Druzina AA; Wei Z; Qiu X; Wu A; Chen X Biomaterials; 2020 Mar; 235():119783. PubMed ID: 31981762 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T Lu X; Zhou H; Liang Z; Feng J; Lu Y; Huang L; Qiu X; Xu Y; Shen Z J Nanobiotechnology; 2022 Jul; 20(1):350. PubMed ID: 35908057 [TBL] [Abstract][Full Text] [Related]
6. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T Wu L; Lu X; Lu Y; Shi M; Guo S; Feng J; Yang S; Xiong W; Xu Y; Yan C; Shen Z Small; 2024 Apr; 20(14):e2308547. PubMed ID: 37988646 [TBL] [Abstract][Full Text] [Related]
7. [T Zhou H; Qiu X; Shen Z Nan Fang Yi Ke Da Xue Xue Bao; 2020 Mar; 40(3):427-444. PubMed ID: 32376585 [TBL] [Abstract][Full Text] [Related]
8. γ-Glutamyltranspeptidase-Triggered Intracellular Gadolinium Nanoparticle Formation Enhances the T Hai Z; Ni Y; Saimi D; Yang H; Tong H; Zhong K; Liang G Nano Lett; 2019 Apr; 19(4):2428-2433. PubMed ID: 30856326 [TBL] [Abstract][Full Text] [Related]
9. Dotted Core-Shell Nanoparticles for T Shen Z; Song J; Zhou Z; Yung BC; Aronova MA; Li Y; Dai Y; Fan W; Liu Y; Li Z; Ruan H; Leapman RD; Lin L; Niu G; Chen X; Wu A Adv Mater; 2018 Jul; ():e1803163. PubMed ID: 29972604 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance Lu C; Xu X; Zhang T; Wang Z; Chai Y J Mater Chem B; 2022 Mar; 10(10):1623-1633. PubMed ID: 35191907 [TBL] [Abstract][Full Text] [Related]
11. Xu S; Wang J; Wei Y; Zhao H; Tao T; Wang H; Wang Z; Du J; Wang H; Qian J; Ma K; Wang J ACS Appl Mater Interfaces; 2020 Dec; 12(51):56701-56711. PubMed ID: 33296181 [TBL] [Abstract][Full Text] [Related]
12. Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors. Zhu D; Lu X; Hardy PA; Leggas M; Jay M Invest Radiol; 2008 Feb; 43(2):129-40. PubMed ID: 18197065 [TBL] [Abstract][Full Text] [Related]
13. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T Wang L; Lin H; Ma L; Jin J; Shen T; Wei R; Wang X; Ai H; Chen Z; Gao J Nanoscale; 2017 Mar; 9(13):4516-4523. PubMed ID: 28317976 [TBL] [Abstract][Full Text] [Related]
14. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Wang G; Zhang X; Skallberg A; Liu Y; Hu Z; Mei X; Uvdal K Nanoscale; 2014 Mar; 6(5):2953-63. PubMed ID: 24480995 [TBL] [Abstract][Full Text] [Related]
15. Kilogram scale facile synthesis and systematic characterization of a Gd-macrochelate as T Shi M; Xiong W; Feng J; Wu L; Yang J; Lu Y; Lu X; Fan Q; Nie H; Dai Y; Yan C; Tian Y; Shen Z J Nanobiotechnology; 2024 Apr; 22(1):162. PubMed ID: 38594700 [TBL] [Abstract][Full Text] [Related]
17. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging. Du H; Yu J; Guo D; Yang W; Wang J; Zhang B Langmuir; 2016 Feb; 32(4):1155-65. PubMed ID: 26740341 [TBL] [Abstract][Full Text] [Related]
18. Gram-Scale Preparation of Iron Oxide Nanoparticles with Renal Clearance Properties for Enhanced Liang G; Han J; Hao Q ACS Appl Bio Mater; 2018 Nov; 1(5):1389-1397. PubMed ID: 34996243 [TBL] [Abstract][Full Text] [Related]
19. Gadolinium(III)-based Polymeric Magnetic Resonance Imaging Agents for Tumor Imaging. Zu G; Kuang Y; Dong J; Cao Y; Zhang T; Liu M; Luo L; Pei R Curr Med Chem; 2018; 25(25):2910-2937. PubMed ID: 28292237 [TBL] [Abstract][Full Text] [Related]
20. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging. Boehm-Sturm P; Haeckel A; Hauptmann R; Mueller S; Kuhl CK; Schellenberger EA Radiology; 2018 Feb; 286(2):537-546. PubMed ID: 28880786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]