These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 32091163)
1. Recapitulating and Deciphering Tumor Microenvironment by Using 3D Printed Plastic Brick-Like Microfluidic Cell Patterning. Liu Y; Liu Y; Zheng X; Zhao L; Zhang X Adv Healthc Mater; 2020 Mar; 9(6):e1901713. PubMed ID: 32091163 [TBL] [Abstract][Full Text] [Related]
2. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment. Berger Fridman I; Kostas J; Gregus M; Ray S; Sullivan MR; Ivanov AR; Cohen S; Konry T Acta Biomater; 2021 Sep; 132():473-488. PubMed ID: 34153511 [TBL] [Abstract][Full Text] [Related]
3. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Yeon JH; Jeong HE; Seo H; Cho S; Kim K; Na D; Chung S; Park J; Choi N; Kang JY Acta Biomater; 2018 Aug; 76():146-153. PubMed ID: 30078422 [TBL] [Abstract][Full Text] [Related]
4. 3D microfluidic tumor models for biomimetic engineering of glioma niche and detection of cell morphology, migration and phenotype change. Lin L; He Z; Jie M; Lin JM; Zhang J Talanta; 2021 Nov; 234():122702. PubMed ID: 34364499 [TBL] [Abstract][Full Text] [Related]
5. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043 [TBL] [Abstract][Full Text] [Related]
6. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device. Shi H; Jiang H; Wang L; Cao Y; Liu P; Xu X; Wang Y; Sun L; Niu H Cell Cycle; 2015; 14(19):3058-65. PubMed ID: 26125467 [TBL] [Abstract][Full Text] [Related]
8. Functional investigation of NCI-H460-inducible myofibroblasts on the chemoresistance to VP-16 with a microfluidic 3D co-culture device. Hao Y; Zhang L; He J; Guo Z; Ying L; Xu Z; Zhang J; Lu J; Wang Q PLoS One; 2013; 8(4):e61754. PubMed ID: 23613925 [TBL] [Abstract][Full Text] [Related]
9. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements. Monia Kabandana GK; Jones CG; Sharifi SK; Chen C ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857 [TBL] [Abstract][Full Text] [Related]
10. Fabrication Method of a High-Density Co-Culture Tumor-Stroma Platform to Study Cancer Progression. Saini H; Nikkhah M Methods Mol Biol; 2021; 2258():241-255. PubMed ID: 33340365 [TBL] [Abstract][Full Text] [Related]
11. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform. Ying L; Zhu Z; Xu Z; He T; Li E; Guo Z; Liu F; Jiang C; Wang Q PLoS One; 2015; 10(6):e0129593. PubMed ID: 26115510 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. Lee JH; Kim SK; Khawar IA; Jeong SY; Chung S; Kuh HJ J Exp Clin Cancer Res; 2018 Jan; 37(1):4. PubMed ID: 29329547 [TBL] [Abstract][Full Text] [Related]
13. Microfluidics meets 3D cancer cell migration. Mehta P; Rahman Z; Ten Dijke P; Boukany PE Trends Cancer; 2022 Aug; 8(8):683-697. PubMed ID: 35568647 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Oh HJ; Kim J; Kim H; Choi N; Chung S Adv Healthc Mater; 2021 May; 10(9):e2002122. PubMed ID: 33576178 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism. Ayuso JM; Sadangi S; Lares M; Rehman S; Humayun M; Denecke KM; Skala MC; Beebe DJ; Setaluri V Lab Chip; 2021 Mar; 21(6):1139-1149. PubMed ID: 33533390 [TBL] [Abstract][Full Text] [Related]
16. Vascularized microfluidic platforms to mimic the tumor microenvironment. Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis. Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976 [TBL] [Abstract][Full Text] [Related]
18. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Lee SW; Kwak HS; Kang MH; Park YY; Jeong GS Sci Rep; 2018 Feb; 8(1):2365. PubMed ID: 29403007 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924 [TBL] [Abstract][Full Text] [Related]
20. 3D-Printed, Modular, and Parallelized Microfluidic System with Customizable Scaffold Integration to Investigate the Roles of Basement Membrane Topography on Endothelial Cells. Jones CG; Huang T; Chung JH; Chen C ACS Biomater Sci Eng; 2021 Apr; 7(4):1600-1607. PubMed ID: 33545000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]