These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 32091446)
1. Machine Learning and Deep Neural Networks Applications in Coronary Flow Assessment: The Case of Computed Tomography Fractional Flow Reserve. Tesche C; Gray HN J Thorac Imaging; 2020 May; 35 Suppl 1():S66-S71. PubMed ID: 32091446 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR. Hu X; Yang M; Han L; Du Y Int J Cardiovasc Imaging; 2018 Dec; 34(12):1987-1996. PubMed ID: 30062537 [TBL] [Abstract][Full Text] [Related]
3. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium. Coenen A; Kim YH; Kruk M; Tesche C; De Geer J; Kurata A; Lubbers ML; Daemen J; Itu L; Rapaka S; Sharma P; Schwemmer C; Persson A; Schoepf UJ; Kepka C; Hyun Yang D; Nieman K Circ Cardiovasc Imaging; 2018 Jun; 11(6):e007217. PubMed ID: 29914866 [TBL] [Abstract][Full Text] [Related]
5. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. Tesche C; Otani K; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Baumann S; Renker M; Bayer RR; Duguay TM; Litwin SE; Varga-Szemes A; Steinberg DH; Yang DH; Kepka C; Persson A; Nieman K; Schoepf UJ JACC Cardiovasc Imaging; 2020 Mar; 13(3):760-770. PubMed ID: 31422141 [TBL] [Abstract][Full Text] [Related]
6. Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods. Takagi H; Ishikawa Y; Orii M; Ota H; Niiyama M; Tanaka R; Morino Y; Yoshioka K J Cardiovasc Comput Tomogr; 2019; 13(2):134-141. PubMed ID: 30385326 [TBL] [Abstract][Full Text] [Related]
7. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia. von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; van Assen M; Bauer MJ; Savage RH; Pannell JT; De Santis D; Johnson AA; Varga-Szemes A; Bayer RR; Schönberg SO; Nance JW; Tesche C Eur Radiol; 2019 May; 29(5):2378-2387. PubMed ID: 30523456 [TBL] [Abstract][Full Text] [Related]
8. Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease. van Assen M; De Cecco CN; Eid M; von Knebel Doeberitz P; Scarabello M; Lavra F; Bauer MJ; Mastrodicasa D; Duguay TM; Zaki B; Lo GG; Choe YH; Wang Y; Sahbaee P; Tesche C; Oudkerk M; Vliegenthart R; Schoepf UJ J Cardiovasc Comput Tomogr; 2019; 13(3):26-33. PubMed ID: 30796003 [TBL] [Abstract][Full Text] [Related]
9. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: A multi-center study and meta-analysis. Tang CX; Wang YN; Zhou F; Schoepf UJ; Assen MV; Stroud RE; Li JH; Zhang XL; Lu MJ; Zhou CS; Zhang DM; Yi Y; Yan J; Lu GM; Xu L; Zhang LJ Eur J Radiol; 2019 Jul; 116():90-97. PubMed ID: 31153580 [TBL] [Abstract][Full Text] [Related]
10. Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: Results from a PC-based prototype algorithm. Röther J; Moshage M; Dey D; Schwemmer C; Tröbs M; Blachutzik F; Achenbach S; Schlundt C; Marwan M J Cardiovasc Comput Tomogr; 2018; 12(2):101-107. PubMed ID: 29409717 [TBL] [Abstract][Full Text] [Related]
11. Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation. Hae H; Kang SJ; Kim WJ; Choi SY; Lee JG; Bae Y; Cho H; Yang DH; Kang JW; Lim TH; Lee CH; Kang DY; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ PLoS Med; 2018 Nov; 15(11):e1002693. PubMed ID: 30422987 [TBL] [Abstract][Full Text] [Related]
12. Coronary CT angiography derived fractional flow reserve: Methodology and evaluation of a point of care algorithm. Coenen A; Lubbers MM; Kurata A; Kono A; Dedic A; Chelu RG; Dijkshoorn ML; van Geuns RJ; Schoebinger M; Itu L; Sharma P; Nieman K J Cardiovasc Comput Tomogr; 2016; 10(2):105-13. PubMed ID: 26747231 [TBL] [Abstract][Full Text] [Related]
13. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Koo HJ; Yang DH; Kim YH; Kang JW; Kang SJ; Kweon J; Kim HJ; Lim TH Int J Cardiovasc Imaging; 2016 Jun; 32 Suppl 1():1-19. PubMed ID: 26667445 [TBL] [Abstract][Full Text] [Related]
14. Computationally simulated fractional flow reserve from coronary computed tomography angiography based on fractional myocardial mass. Han H; Bae YG; Hwang ST; Kim HY; Park I; Kim SM; Choe Y; Moon YJ; Choi JH Int J Cardiovasc Imaging; 2019 Jan; 35(1):185-193. PubMed ID: 30128848 [TBL] [Abstract][Full Text] [Related]
15. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve for Therapeutic Decision Making. Tesche C; Vliegenthart R; Duguay TM; De Cecco CN; Albrecht MH; De Santis D; Langenbach MC; Varga-Szemes A; Jacobs BE; Jochheim D; Baquet M; Bayer RR; Litwin SE; Hoffmann E; Steinberg DH; Schoepf UJ Am J Cardiol; 2017 Dec; 120(12):2121-2127. PubMed ID: 29102036 [TBL] [Abstract][Full Text] [Related]
16. Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice. Kawaji T; Shiomi H; Morishita H; Morimoto T; Taylor CA; Kanao S; Koizumi K; Kozawa S; Morihiro K; Watanabe H; Tazaki J; Imai M; Saito N; Shizuta S; Ono K; Togashi K; Kimura T Int J Cardiovasc Imaging; 2017 Feb; 33(2):271-281. PubMed ID: 27718139 [TBL] [Abstract][Full Text] [Related]
17. Integrating CT Myocardial Perfusion and CT-FFR in the Work-Up of Coronary Artery Disease. Coenen A; Rossi A; Lubbers MM; Kurata A; Kono AK; Chelu RG; Segreto S; Dijkshoorn ML; Wragg A; van Geuns RM; Pugliese F; Nieman K JACC Cardiovasc Imaging; 2017 Jul; 10(7):760-770. PubMed ID: 28109933 [TBL] [Abstract][Full Text] [Related]
18. Noninvasive FFR derived from coronary CT angiography in the management of coronary artery disease: technology and clinical update. Nakanishi R; Budoff MJ Vasc Health Risk Manag; 2016; 12():269-78. PubMed ID: 27382296 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis: A Comparison With Invasive FFR for Detection of Functionally Significant Stenosis. Ko BS; Cameron JD; Munnur RK; Wong DTL; Fujisawa Y; Sakaguchi T; Hirohata K; Hislop-Jambrich J; Fujimoto S; Takamura K; Crossett M; Leung M; Kuganesan A; Malaiapan Y; Nasis A; Troupis J; Meredith IT; Seneviratne SK JACC Cardiovasc Imaging; 2017 Jun; 10(6):663-673. PubMed ID: 27771399 [TBL] [Abstract][Full Text] [Related]
20. Detection of Hemodynamically Significant Coronary Stenosis: CT Myocardial Perfusion versus Machine Learning CT Fractional Flow Reserve. Li Y; Yu M; Dai X; Lu Z; Shen C; Wang Y; Lu B; Zhang J Radiology; 2019 Nov; 293(2):305-314. PubMed ID: 31549943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]