These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32091520)

  • 1. Polaronic structure of excess electrons and holes for a series of bulk iron oxides.
    Ahart CS; Blumberger J; Rosso KM
    Phys Chem Chem Phys; 2020 May; 22(19):10699-10709. PubMed ID: 32091520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron and Hole Mobilities in Bulk Hematite from Spin-Constrained Density Functional Theory.
    Ahart CS; Rosso KM; Blumberger J
    J Am Chem Soc; 2022 Mar; 144(10):4623-4632. PubMed ID: 35239359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transport in metal oxides: a theoretical study of hematite alpha-Fe2O3.
    Iordanova N; Dupuis M; Rosso KM
    J Chem Phys; 2005 Apr; 122(14):144305. PubMed ID: 15847520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoexcited Small Polaron Formation in Goethite (α-FeOOH) Nanorods Probed by Transient Extreme Ultraviolet Spectroscopy.
    Molesky IJP; Cushing SK; Carneiro LM; Lee A; Ondry JC; Dahl JC; Chang HT; Alivisatos AP; Leone SR
    J Phys Chem Lett; 2018 Jul; 9(14):4120-4124. PubMed ID: 29985006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport in pure and substituted iron oxyhydroxides by small-polaron migration.
    Alexandrov V; Rosso KM
    J Chem Phys; 2014 Jun; 140(23):234701. PubMed ID: 24952554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.
    Park JA; Kim SB
    J Contam Hydrol; 2015 Oct; 181():131-40. PubMed ID: 25704059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo model of charge transport in hematite (alpha-Fe(2)O(3)).
    Kerisit S; Rosso KM
    J Chem Phys; 2007 Sep; 127(12):124706. PubMed ID: 17902930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite.
    Alexandratos VG; Behrends T; Van Cappellen P
    Environ Sci Technol; 2017 Feb; 51(4):2140-2150. PubMed ID: 28121137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants.
    Elsner M; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2004 Feb; 38(3):799-807. PubMed ID: 14968867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polaronic optical transitions in hematite (α-Fe
    Shelton JL; Knowles KE
    J Chem Phys; 2022 Nov; 157(17):174703. PubMed ID: 36347702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface and Bulk Thermal Dehydroxylation of FeOOH Polymorphs.
    Song X; Boily JF
    J Phys Chem A; 2016 Aug; 120(31):6249-57. PubMed ID: 27426101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.
    Smart TJ; Ping Y
    J Phys Condens Matter; 2017 Oct; 29(39):394006. PubMed ID: 28685710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene.
    Kim HS; Kang WH; Kim M; Park JY; Hwang I
    Chemosphere; 2008 Oct; 73(5):813-9. PubMed ID: 18597815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals.
    O'Loughlin EJ; Boyanov MI; Flynn TM; Gorski CA; Hofmann SM; McCormick ML; Scherer MM; Kemner KM
    Environ Sci Technol; 2013 Aug; 47(16):9157-66. PubMed ID: 23909690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): a 2H and 7Li solid-state MAS NMR study.
    Kim J; Nielsen UG; Grey CP
    J Am Chem Soc; 2008 Jan; 130(4):1285-95. PubMed ID: 18181622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterostructures of ε-Fe
    Ahamed I; Seriani N; Gebauer R; Kashyap A
    RSC Adv; 2020 Jul; 10(46):27474-27480. PubMed ID: 35516952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe adsorption on hematite (α-Fe2O3) (0001) and magnetite (Fe3O4) (111) surfaces.
    Pabisiak T; Kiejna A
    J Chem Phys; 2014 Oct; 141(13):134707. PubMed ID: 25296828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces.
    Cagnasso M; Boero V; Franchini MA; Chorover J
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):456-67. PubMed ID: 20074916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.