These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32091986)

  • 1. Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements.
    Wong CM; Wang B; Wang Z; Lao KF; Rosa A; Wan F
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3057-3072. PubMed ID: 32091986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neurosci Methods; 2018 Sep; 307():164-174. PubMed ID: 29890196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs.
    Wei Q; Zhu S; Wang Y; Gao X; Guo H; Wu X
    Int J Neural Syst; 2020 May; 30(5):2050020. PubMed ID: 32380925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Least-Square Unified Framework for Spatial Filtering in SSVEP-Based BCIs.
    Wang Z; Shen L; Yang Y; Ma Y; Man Wong C; Liu Z; Lin C; Tin Hon C; Qian T; Wan F
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2470-2481. PubMed ID: 38976469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Maximum Likelihood Perspective of Spatial Filter Design in SSVEP-Based BCIs.
    Wang Z; Zhao X; Zhang M; Hu H
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2706-2717. PubMed ID: 33417535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent component analysis-based spatial filtering improves template-based SSVEP detection.
    Nakanishi M; Yijun Wang ; Sheng-Hsiou Hsu ; Yu-Te Wang ; Tzyy-Ping Jung
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3620-3623. PubMed ID: 29060682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SSVEP-EEG Denoising via Image Filtering Methods.
    Yan W; Du C; Wu Y; Zheng X; Xu G
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1634-1643. PubMed ID: 34398754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Precise Frequency Recognition Method of Short-Time SSVEP Signals Based on Signal Extension.
    Li H; Xu G; Li Z; Zhang K; Zheng X; Du C; Han C; Kuang J; Du Y; Zhang S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2486-2496. PubMed ID: 37155399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing a Sum of Squared Correlations Framework for Enhancing SSVEP-Based BCIs.
    Kiran Kumar GR; Ramasubba Reddy M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2044-2050. PubMed ID: 31536009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive Task-Related Component Analysis Method for SSVEP Recognition.
    Oikonomou VP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency Domain Filtering Method for SSVEP-EEG Preprocessing.
    Yan W; He B; Zhao J; Wu Y; Du C; Xu G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2079-2089. PubMed ID: 37067974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Canonical Correlation Analysis-Based Transfer Learning Framework for Enhancing the Performance of SSVEP-Based BCIs.
    Wei Q; Zhang Y; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2809-2821. PubMed ID: 37342949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial smoothing of canonical correlation analysis for steady state visual evoked potential based brain computer interfaces.
    Ryu S; Higashi H; Tanaka T; Nakauchi S; Minami T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1516-1519. PubMed ID: 28268614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    Int J Neural Syst; 2014 Jun; 24(4):1450013. PubMed ID: 24694168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistically Optimized Spatial Filtering in Decoding Steady-State Visual Evoked Potentials Based on Task-Related Component Analysis.
    Chiang KJ; Nakanishi M; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3070-3073. PubMed ID: 33018653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering.
    Mobaien A; Boostani R; Sanei S
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295418
    [No Abstract]   [Full Text] [Related]  

  • 19. Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information.
    Yuan P; Chen X; Wang Y; Gao X; Gao S
    J Neural Eng; 2015 Aug; 12(4):046006. PubMed ID: 26028259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.
    Morikawa N; Tanaka T; Islam MR
    J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.