BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 32092078)

  • 1. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma.
    Pang X; Fan HY; Tang YL; Wang SS; Cao MX; Wang HF; Dai LL; Wang K; Yu XH; Wu JB; Tang YJ; Liang XH
    PLoS One; 2020; 15(2):e0229089. PubMed ID: 32092078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma.
    Zhong LM; Liu ZG; Zhou X; Song SH; Weng GY; Wen Y; Liu FB; Cao DL; Liu YF
    Oral Oncol; 2019 Aug; 95():157-163. PubMed ID: 31345384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid-derived suppressor cells and plasmacytoid dendritic cells are associated with oncogenesis of oral squamous cell carcinoma.
    Kouketsu A; Haruka S; Kuroda K; Hitoshi M; Kensuke Y; Tsuyoshi S; Takahashi T; Hiroyuki K
    J Oral Pathol Med; 2023 Jan; 52(1):9-19. PubMed ID: 36380437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diet-induced obesity accelerates oral carcinogenesis by recruitment and functional enhancement of myeloid-derived suppressor cells.
    Peng J; Hu Q; Chen X; Wang C; Zhang J; Ren X; Wang Y; Tao X; Li H; Song M; Cheng B; Wu T; Xia J
    Cell Death Dis; 2021 Oct; 12(10):946. PubMed ID: 34650054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mucoadhesive celecoxib-loaded cubosomal sponges: Anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma.
    Mabrouk AA; El-Mezayen NS; Tadros MI; El-Gazayerly ON; El-Refaie WM
    Eur J Pharm Biopharm; 2023 Jan; 182():62-80. PubMed ID: 36513316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma.
    Dar AA; Patil RS; Pradhan TN; Chaukar DA; D'Cruz AK; Chiplunkar SV
    Cancer Immunol Immunother; 2020 Jun; 69(6):1071-1086. PubMed ID: 32103293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperion Image Analysis Depicts a Preliminary Landscape of Tumor Immune Microenvironment in OSCC with Lymph Node Metastasis.
    Xie S; Zhang XY; Shan XF; Yau V; Zhang JY; Wang W; Yan YP; Cai ZG
    J Immunol Res; 2021; 2021():9975423. PubMed ID: 34239944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circulating myeloid-derived suppressor cells: An independent prognostic factor in patients with breast cancer.
    Safarzadeh E; Hashemzadeh S; Duijf PHG; Mansoori B; Khaze V; Mohammadi A; Kazemi T; Yousefi M; Asadi M; Mohammadi H; Babaie F; Baradaran B
    J Cell Physiol; 2019 Apr; 234(4):3515-3525. PubMed ID: 30362521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VISTA blockade alleviates immunosuppression of MDSCs in oral squamous cell carcinoma.
    Liu J; Lin WP; Xiao Y; Yang QC; Bushabu Fidele N; Yu HJ; Sun ZJ
    Int Immunopharmacol; 2023 Dec; 125(Pt A):111128. PubMed ID: 37907049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STAT3 promotes differentiation of monocytes to MDSCs via CD39/CD73-adenosine signal pathway in oral squamous cell carcinoma.
    Cui H; Lan Z; Zou KL; Zhao YY; Yu GT
    Cancer Immunol Immunother; 2023 May; 72(5):1315-1326. PubMed ID: 36436019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High ACTN1 Is Associated with Poor Prognosis, and ACTN1 Silencing Suppresses Cell Proliferation and Metastasis in Oral Squamous Cell Carcinoma.
    Xie GF; Zhao LD; Chen Q; Tang DX; Chen QY; Lu HF; Cai JR; Chen Z
    Drug Des Devel Ther; 2020; 14():1717-1727. PubMed ID: 32440097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCL18-NIR1 promotes oral cancer cell growth and metastasis by activating the JAK2/STAT3 signaling pathway.
    Jiang X; Huang Z; Sun X; Zheng X; Liu J; Shen J; Jia B; Luo H; Mai Z; Chen G; Zhao J
    BMC Cancer; 2020 Jul; 20(1):632. PubMed ID: 32641093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic Stellate Cells Enhance Liver Cancer Progression by Inducing Myeloid-Derived Suppressor Cells through Interleukin-6 Signaling.
    Hsieh CC; Hung CH; Chiang M; Tsai YC; He JT
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The number of myeloid suppressor cells, Th17 cells of peripheral blood and the serum IL-17 level increase in patients with oral squamous cell carcinoma].
    Qiu C; She P; Yao C; Zhou H; Su Z; Kong F
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2016 Oct; 32(10):1382-1385. PubMed ID: 27667467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD33
    Sun Y; Shao J; Jiang F; Wang Y; Yan Q; Yu N; Zhang J; Zhang J; Li M; He Y
    Am J Reprod Immunol; 2019 Jan; 81(1):e13067. PubMed ID: 30375700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring carcinogenesis in a case of oral squamous cell carcinoma using a panel of new metabolic blood biomarkers as liquid biopsies.
    Grimm M; Hoefert S; Krimmel M; Biegner T; Feyen O; Teriete P; Reinert S
    Oral Maxillofac Surg; 2016 Sep; 20(3):295-302. PubMed ID: 26875085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of programmed cell death-ligand 1 in oral squamous cell carcinoma and oral leukoplakia is associated with disease progress and CD8+ tumor-infiltrating lymphocytes.
    Chen XJ; Tan YQ; Zhang N; He MJ; Zhou G
    Pathol Res Pract; 2019 Jun; 215(6):152418. PubMed ID: 31027907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular localization and expression of E-cadherin and SNAIL are relevant since early stages of oral carcinogenesis.
    Lopes NM; Xavier FCA; Ortiz RC; Amôr NG; Garlet GP; Lara VS; Batista AC; Costa NL; Rodini CO
    Pathol Res Pract; 2018 Aug; 214(8):1185-1191. PubMed ID: 29970306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell‑like properties and the epithelial‑mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway.
    Zhang Y; Cai H; Liao Y; Zhu Y; Wang F; Hou J
    Int J Oncol; 2020 Sep; 57(3):743-755. PubMed ID: 32705252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemistry of YAP and dNp63 and survival analysis of patients bearing precancerous lesion and oral squamous cell carcinoma.
    Ono S; Nakano K; Takabatake K; Kawai H; Nagatsuka H
    Int J Med Sci; 2019; 16(5):766-773. PubMed ID: 31217745
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.