These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32092467)
1. Modelling triatomine bug population and Trypanosoma rangeli transmission dynamics: Co-feeding, pathogenic effect and linkage with chagas disease. Wu X; Gao D; Song Z; Wu J Math Biosci; 2020 Jun; 324():108326. PubMed ID: 32092467 [TBL] [Abstract][Full Text] [Related]
2. Modelling the dynamics of Chen L; Wu X; Xu Y; Rong L Math Biosci Eng; 2022 Jun; 19(8):8452-8478. PubMed ID: 35801473 [TBL] [Abstract][Full Text] [Related]
3. What is the 'true' effect of Trypanosoma rangeli on its triatomine bug vector? Peterson JK; Graham AL J Vector Ecol; 2016 Jun; 41(1):27-33. PubMed ID: 27232121 [TBL] [Abstract][Full Text] [Related]
4. High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Ramirez LE; Lages-Silva E; Alvarenga-Franco F; Matos A; Vargas N; Fernandes O; Zingales B Acta Trop; 2002 Dec; 84(3):189-98. PubMed ID: 12443797 [TBL] [Abstract][Full Text] [Related]
5. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
6. Control measures for Chagas disease. Cruz-Pacheco G; Esteva L; Vargas C Math Biosci; 2012 May; 237(1-2):49-60. PubMed ID: 22450034 [TBL] [Abstract][Full Text] [Related]
7. Remarkable genetic diversity of Trypanosoma cruzi and Trypanosoma rangeli in two localities of southern Ecuador identified via deep sequencing of mini-exon gene amplicons. Maiguashca Sánchez J; Sueto SOB; Schwabl P; Grijalva MJ; Llewellyn MS; Costales JA Parasit Vectors; 2020 May; 13(1):252. PubMed ID: 32410645 [TBL] [Abstract][Full Text] [Related]
8. Modeling the Spatial Spread of Chagas Disease. Steindorf V; Maidana NA Bull Math Biol; 2019 Jun; 81(6):1687-1730. PubMed ID: 30805855 [TBL] [Abstract][Full Text] [Related]
10. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador. Ocaña-Mayorga S; Aguirre-Villacis F; Pinto CM; Vallejo GA; Grijalva MJ Vector Borne Zoonotic Dis; 2015 Dec; 15(12):732-42. PubMed ID: 26645579 [TBL] [Abstract][Full Text] [Related]
11. Modeling the impact of non-human host predation on the transmission of Chagas disease. Dai X; Wu X; Jiang J; Rong L Math Biosci; 2024 Aug; 374():109230. PubMed ID: 38851529 [TBL] [Abstract][Full Text] [Related]
12. Susceptibility of different triatomine species to Trypanosoma rangeli experimental infection. De Stefani Marquez D; Rodrigues-Ottaiano C; Mônica Oliveira R; Pedrosa AL; Cabrine-Santos M; Lages-Silva E; Ramírez LE Vector Borne Zoonotic Dis; 2006; 6(1):50-6. PubMed ID: 16584327 [TBL] [Abstract][Full Text] [Related]
13. Modelling the transmission of Trypanosoma cruzi: the need for an integrated genetic epidemiological and population genomics approach. Tibayrenc M Adv Exp Med Biol; 2010; 673():200-11. PubMed ID: 20632539 [TBL] [Abstract][Full Text] [Related]
15. Infecting Triatomines with Trypanosomes. Guarneri AA Methods Mol Biol; 2020; 2116():69-79. PubMed ID: 32221914 [TBL] [Abstract][Full Text] [Related]
16. TriatoScore: an entomological-risk score for Chagas disease vector control-surveillance. Ribeiro-Jr G; Abad-Franch F; de Sousa OMF; Dos Santos CGS; Fonseca EOL; Dos Santos RF; Cunha GM; de Carvalho CMM; Reis RB; Gurgel-Gonçalves R; Reis MG Parasit Vectors; 2021 Sep; 14(1):492. PubMed ID: 34563255 [TBL] [Abstract][Full Text] [Related]
17. New features on the survival of human-infective Trypanosoma rangeli in a murine model: Parasite accumulation is observed in lymphoid organs. Ferreira LL; Araújo FF; Martinelli PM; Teixeira-Carvalho A; Alves-Silva J; Guarneri AA PLoS Negl Trop Dis; 2020 Dec; 14(12):e0009015. PubMed ID: 33370305 [TBL] [Abstract][Full Text] [Related]
18. Marliére NP; Lorenzo MG; Guarneri AA Parasitology; 2022 Feb; 149(2):155-160. PubMed ID: 35234603 [TBL] [Abstract][Full Text] [Related]
19. Trypanosomatid isolates from Honduras: differentiation between Trypanosoma cruzi and Trypanosoma rangeli. Acosta L; Romanha AJ; Cosenza H; Krettli AU Am J Trop Med Hyg; 1991 Jun; 44(6):676-83. PubMed ID: 1907109 [TBL] [Abstract][Full Text] [Related]
20. A metapopulation model for sylvatic T. cruzi transmission with vector migration. Crawford B; Kribs-Zaleta C Math Biosci Eng; 2014 Jun; 11(3):471-509. PubMed ID: 24506549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]