These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32092580)
1. Enhanced biogeogenic controls on dichromate speciation in subsoil containment. Cj S; T S Ecotoxicol Environ Saf; 2020 Apr; 193():110327. PubMed ID: 32092580 [TBL] [Abstract][Full Text] [Related]
2. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Camargo FA; Bento FM; Okeke BC; Frankenberger WT J Environ Qual; 2003; 32(4):1228-33. PubMed ID: 12931876 [TBL] [Abstract][Full Text] [Related]
3. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI). Lara P; Morett E; Juárez K Environ Sci Pollut Res Int; 2017 Nov; 24(33):25513-25521. PubMed ID: 27525740 [TBL] [Abstract][Full Text] [Related]
4. Processes of chromium (VI) migration and transformation in chromate production site: A case study from the middle of China. Wang X; Li L; Yan X; Meng X; Chen Y Chemosphere; 2020 Oct; 257():127282. PubMed ID: 32531491 [TBL] [Abstract][Full Text] [Related]
5. Microbial reduction of hexavalent chromium under vadose zone conditions. Oliver DS; Brockman FJ; Bowman RS; Kieft TL J Environ Qual; 2003; 32(1):317-24. PubMed ID: 12549572 [TBL] [Abstract][Full Text] [Related]
6. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060 [TBL] [Abstract][Full Text] [Related]
7. Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry. Guidotti L; Queipo Abad S; Rodríguez-González P; García Alonso JI; Beone GM Environ Sci Pollut Res Int; 2015 Nov; 22(22):17569-76. PubMed ID: 26141979 [TBL] [Abstract][Full Text] [Related]
8. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. Beretta G; Sangalli M; Sezenna E; Tofalos AE; Franzetti A; Saponaro S Integr Environ Assess Manag; 2024 Nov; 20(6):2033-2049. PubMed ID: 38953765 [TBL] [Abstract][Full Text] [Related]
9. Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Lee SE; Lee JU; Chon HT; Lee JS Environ Geochem Health; 2008 Apr; 30(2):141-5. PubMed ID: 18286377 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Megharaj M; Avudainayagam S; Naidu R Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. Kabir MM; Fakhruddin ANM; Chowdhury MAZ; Pramanik MK; Fardous Z World J Microbiol Biotechnol; 2018 Aug; 34(9):126. PubMed ID: 30083836 [TBL] [Abstract][Full Text] [Related]
12. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. Jeyasingh J; Philip L J Hazard Mater; 2005 Feb; 118(1-3):113-20. PubMed ID: 15721535 [TBL] [Abstract][Full Text] [Related]
13. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Maqbool Z; Asghar HN; Shahzad T; Hussain S; Riaz M; Ali S; Arif MS; Maqsood M Ecotoxicol Environ Saf; 2015 Apr; 114():343-9. PubMed ID: 25066609 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles. Wang T; Qian T; Huo L; Li Y; Zhao D Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830 [TBL] [Abstract][Full Text] [Related]
15. Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation. Park JH Environ Pollut; 2020 Nov; 266(Pt 2):115073. PubMed ID: 32629411 [TBL] [Abstract][Full Text] [Related]
16. Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. Bahafid W; Tahri Joutey N; Sayel H; Boularab I; El Ghachtouli N J Appl Microbiol; 2013 Sep; 115(3):727-34. PubMed ID: 23773206 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J; Lhotský O; Cajthaml T Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106 [TBL] [Abstract][Full Text] [Related]
18. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. Tokunaga TK; Wan J; Firestone MK; Hazen TC; Olson KR; Herman DJ; Sutton SR; Lanzirotti A J Environ Qual; 2003; 32(5):1641-9. PubMed ID: 14535304 [TBL] [Abstract][Full Text] [Related]
19. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Camargo FA; Okeke BC; Bento FM; Frankenberger WT Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851 [TBL] [Abstract][Full Text] [Related]
20. Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). Gao Y; Wang H; Xu R; Wang YN; Sun Y; Bian R; Li W Ecotoxicol Environ Saf; 2022 Feb; 231():113198. PubMed ID: 35033874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]