These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
636 related articles for article (PubMed ID: 32092614)
1. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. Wang H; Yuan G; Zhao X; Peng L; Wang Z; He Y; Qu C; Peng Z Comput Methods Programs Biomed; 2020 Jul; 191():105398. PubMed ID: 32092614 [TBL] [Abstract][Full Text] [Related]
2. An ensemble deep learning based approach for red lesion detection in fundus images. Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445 [TBL] [Abstract][Full Text] [Related]
3. Hard exudates segmentation based on learned initial seeds and iterative graph cut. Kusakunniran W; Wu Q; Ritthipravat P; Zhang J Comput Methods Programs Biomed; 2018 May; 158():173-183. PubMed ID: 29544783 [TBL] [Abstract][Full Text] [Related]
4. Semi-automated quantification of hard exudates in colour fundus photographs diagnosed with diabetic retinopathy. Marupally AG; Vupparaboina KK; Peguda HK; Richhariya A; Jana S; Chhablani J BMC Ophthalmol; 2017 Sep; 17(1):172. PubMed ID: 28931389 [TBL] [Abstract][Full Text] [Related]
5. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380 [TBL] [Abstract][Full Text] [Related]
6. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Prentašić P; Lončarić S Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732 [TBL] [Abstract][Full Text] [Related]
7. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images. Kadan AB; Subbian PS J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041 [TBL] [Abstract][Full Text] [Related]
8. Weighted ensemble based automatic detection of exudates in fundus photographs. Prentasic P; Loncaric S Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():138-41. PubMed ID: 25569916 [TBL] [Abstract][Full Text] [Related]
9. Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images. Colomer A; Igual J; Naranjo V Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32069912 [TBL] [Abstract][Full Text] [Related]
10. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System. Jaya T; Dheeba J; Singh NA J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397 [TBL] [Abstract][Full Text] [Related]
11. EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy Using Neural Networks. Wan C; Chen Y; Li H; Zheng B; Chen N; Yang W; Wang C; Li Y Dis Markers; 2021; 2021():6482665. PubMed ID: 34512815 [TBL] [Abstract][Full Text] [Related]
12. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. Khojasteh P; Aliahmad B; Kumar DK BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869 [TBL] [Abstract][Full Text] [Related]
13. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
14. A Novel Approach for Detection of Hard Exudates Using Random Forest Classifier. Pratheeba C; Singh NN J Med Syst; 2019 May; 43(7):180. PubMed ID: 31093787 [TBL] [Abstract][Full Text] [Related]
15. Deep CNN with Hybrid Binary Local Search and Particle Swarm Optimizer for Exudates Classification from Fundus Images. Ramya J; Rajakumar MP; Maheswari BU J Digit Imaging; 2022 Feb; 35(1):56-67. PubMed ID: 34997375 [TBL] [Abstract][Full Text] [Related]
16. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
17. Decision support system for the detection and grading of hard exudates from color fundus photographs. Jaafar HF; Nandi AK; Al-Nuaimy W J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106 [TBL] [Abstract][Full Text] [Related]
18. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058 [TBL] [Abstract][Full Text] [Related]
19. Multi-scale multi-attention network for diabetic retinopathy grading. Xia H; Long J; Song S; Tan Y Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368 [No Abstract] [Full Text] [Related]
20. Feature extraction and selection for the automatic detection of hard exudates in retinal images. Garcia M; Hornero R; Sánchez CI; López MI; Diez A Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]