These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32092697)

  • 1. A global review of target impact and direct nontarget effects of classical weed biological control.
    Hinz HL; Winston RL; Schwarzländer M
    Curr Opin Insect Sci; 2020 Apr; 38():48-54. PubMed ID: 32092697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts.
    Catton HA; Lalonde RG; De Clerck-Floate RA
    Ecol Appl; 2015 Mar; 25(2):517-30. PubMed ID: 26263672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to better predict long-term benefits and risks in weed biocontrol: an evolutionary perspective.
    Müller-Schärer H; Bouchemousse S; Litto M; McEvoy PB; Roderick GK; Sun Y
    Curr Opin Insect Sci; 2020 Apr; 38():84-91. PubMed ID: 32240967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential host-finding abilities by a weed biocontrol insect create within-patch spatial refuges for nontarget plants.
    Catton HA; Lalonde RG; De Clerck-Floate RA
    Environ Entomol; 2014 Oct; 43(5):1333-44. PubMed ID: 25259695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What magnitude are observed non-target impacts from weed biocontrol?
    Suckling DM; Sforza RF
    PLoS One; 2014; 9(1):e84847. PubMed ID: 24454755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-release monitoring in classical biological control of weeds: assessing impact and testing pre-release hypotheses.
    Schaffner U; Hill M; Dudley T; D'Antonio C
    Curr Opin Insect Sci; 2020 Apr; 38():99-106. PubMed ID: 32278264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting non-target impacts.
    Paynter Q; Paterson ID; Kwong RM
    Curr Opin Insect Sci; 2020 Apr; 38():79-83. PubMed ID: 32240966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing ecological interaction networks to support risk assessment in classical biological control of weeds.
    Ollivier M; Lesieur V; Raghu S; Martin JF
    Curr Opin Insect Sci; 2020 Apr; 38():40-47. PubMed ID: 32088650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex interactions among biocontrol agents, pollinators, and an invasive weed: a structural equation modeling approach.
    Swope SM; Parker IM
    Ecol Appl; 2012 Dec; 22(8):2122-34. PubMed ID: 23387114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the social and economic benefits of the biological control of invasive alien plants in natural ecosystems.
    van Wilgen BW; Raghu S; Sheppard AW; Schaffner U
    Curr Opin Insect Sci; 2020 Apr; 38():1-5. PubMed ID: 32070815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weed biological control in low- and middle-income countries.
    Day M; Witt A; Winston R
    Curr Opin Insect Sci; 2020 Apr; 38():92-98. PubMed ID: 32259686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocontrol of invasive weeds under climate change: progress, challenges and management implications.
    Sun Y; Ding J; Siemann E; Keller SR
    Curr Opin Insect Sci; 2020 Apr; 38():72-78. PubMed ID: 32200301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research.
    Smith L; de Lillo E; Amrine JW
    Exp Appl Acarol; 2010 Jul; 51(1-3):115-49. PubMed ID: 19760101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive environmental safety assessment of threatened and endangered plants in weed biological control.
    Park I; Schwarzländer M; Eigenbrode SD; Harmon BL; Hinz HL; Schaffner U
    PeerJ; 2024; 12():e16813. PubMed ID: 38374952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Field Densities of the Naturalized Defoliator Caloptilia triadicae (Lepidoptera: Gracillariidae) on the Invasive Weed Chinese Tallowtree.
    Wheeler GS; Hight SD; Wright SA
    Environ Entomol; 2017 Dec; 46(6):1305-1312. PubMed ID: 29029031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host Range of Herpetogramma basalis (Lepidoptera: Crambidae), a Biological Control Agent for the Invasive Weed Alternanthera philoxeroides (Centrospermae: Amaranthaceae) in China.
    Chu S; Cong S; Li R; Hou Y
    J Insect Sci; 2019 Nov; 19(6):. PubMed ID: 31679019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New pasture plants intensify invasive species risk.
    Driscoll DA; Catford JA; Barney JN; Hulme PE; Inderjit ; Martin TG; Pauchard A; Pyšek P; Richardson DM; Riley S; Visser V
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16622-7. PubMed ID: 25368175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol. Loosing the louse on Europe's largest invasive pest.
    Carpenter J
    Science; 2011 May; 332(6031):781. PubMed ID: 21566170
    [No Abstract]   [Full Text] [Related]  

  • 19. Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria petiolata).
    Davis AS; Landis DA; Nuzzo V; Blossey B; Gerber E; Hinz HL
    Ecol Appl; 2006 Dec; 16(6):2399-410. PubMed ID: 17205913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editorial overview: Biological control of plant invaders: a continued stimulus and yet untapped potential to link and advance applied and basic research.
    Muller-Scharer H; Schaffner U
    Curr Opin Insect Sci; 2020 Apr; 38():v-viii. PubMed ID: 32327393
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.