These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 32092713)
1. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Li H; Yin Y; Xiang Y; Liu H; Guo R Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713 [TBL] [Abstract][Full Text] [Related]
2. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of 3D porous conductive scaffolds with magnetic resonance enhancement in tissue engineering. Chen J; Hu H; Feng L; Zhu Q; Hancharou A; Liu B; Yan C; Xu Y; Guo R Biomed Mater; 2019 May; 14(4):045013. PubMed ID: 31035263 [TBL] [Abstract][Full Text] [Related]
4. Production and Characterization of an Integrated Multi-Layer 3D Printed PLGA/GelMA Scaffold Aimed for Bile Duct Restoration and Detection. Xiang Y; Wang W; Gao Y; Zhang J; Zhang J; Bai Z; Zhang S; Yang Y Front Bioeng Biotechnol; 2020; 8():971. PubMed ID: 32984274 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
7. Recombinant collagen coating 3D printed PEGDA hydrogel tube loading with differentiable BMSCs to repair bile duct injury. Xiang Y; Gao Y; Cheng Q; Lei Z; Zhang X; Yang Y; Zhang J Colloids Surf B Biointerfaces; 2024 Sep; 241():114064. PubMed ID: 38954937 [TBL] [Abstract][Full Text] [Related]
8. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045 [TBL] [Abstract][Full Text] [Related]
9. Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies. Yilmaz H; Bedir T; Gursoy S; Kaya E; Senel I; Tinaz GB; Gunduz O; Ustundag CB Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38838701 [TBL] [Abstract][Full Text] [Related]
10. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. Zong C; Wang M; Yang F; Chen G; Chen J; Tang Z; Liu Q; Gao C; Ma L; Wang J J Tissue Eng Regen Med; 2017 Apr; 11(4):966-976. PubMed ID: 25711909 [TBL] [Abstract][Full Text] [Related]
11. Novel 3D-printing bilayer GelMA-based hydrogel containing BP, Sun T; Feng Z; He W; Li C; Han S; Li Z; Guo R Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37857284 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Liu X; Yan J; Liu J; Wang Y; Yin J; Fu J Biofabrication; 2021 May; 13(3):. PubMed ID: 33873178 [TBL] [Abstract][Full Text] [Related]
14. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345 [TBL] [Abstract][Full Text] [Related]
15. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
16. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
18. Development of a biodegradable prosthesis through tissue engineering, for the organ-replacement or substitution of the extrahepatic bile duct. Valderrama-Treviño AI; Castell-Rodríguez AE; Hernández-Muñoz R; Vázquez-Torres NA; Macari-Jorge A; Barrera-Mera B; Maciel-Cerda A; Vera-Graziano R; Nuño-Lámbarri N; Montalvo-Javé EE Ann Hepatol; 2024; 29(5):101530. PubMed ID: 39033929 [TBL] [Abstract][Full Text] [Related]
19. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
20. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. Buyuksungur S; Hasirci V; Hasirci N J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]