BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32092778)

  • 1. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High-Throughput Screening: Application to O-GlcNAc Transferase.
    Alteen MG; Gros C; Meek RW; Cardoso DA; Busmann JA; Sangouard G; Deen MC; Tan HY; Shen DL; Russell CC; Davies GJ; Robinson PJ; McCluskey A; Vocadlo DJ
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9601-9609. PubMed ID: 32092778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity.
    Hu J; Li Y; Li Y; Tang B; Zhang CY
    Anal Chem; 2017 Dec; 89(23):12992-12999. PubMed ID: 29115822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies and activity measurements for the detection of O-GlcNAc transferase and assay of its substrate, UDP-GlcNAc.
    Lefebvre T; Drougat L; Olivier-Van Stichelen S; Michalski JC; Vercoutter-Edouart AS
    Methods Mol Biol; 2013; 1022():147-59. PubMed ID: 23765660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Economical High-Throughput "FP-Tag" Assay for Screening Glycosyltransferase Inhibitors*.
    Yin X; Li J; Chen S; Wu Y; She Z; Liu L; Wang Y; Gao Z
    Chembiochem; 2021 Apr; 22(8):1391-1395. PubMed ID: 33259119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase.
    Hu CW; Worth M; Fan D; Li B; Li H; Lu L; Zhong X; Lin Z; Wei L; Ge Y; Li L; Jiang J
    Nat Chem Biol; 2017 Dec; 13(12):1267-1273. PubMed ID: 29058723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity Based High-Throughput Screening for Novel O-GlcNAc Transferase Substrates Using a Dynamic Peptide Microarray.
    Shi J; Sharif S; Ruijtenbeek R; Pieters RJ
    PLoS One; 2016; 11(3):e0151085. PubMed ID: 26960196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.
    Qi J; Wang R; Zeng Y; Yu W; Gu Y
    Prep Biochem Biotechnol; 2017 Aug; 47(7):699-702. PubMed ID: 28296566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity.
    Rodriguez AC; Yu SH; Li B; Zegzouti H; Kohler JJ
    J Biol Chem; 2015 Sep; 290(37):22638-48. PubMed ID: 26240142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-GlcNAc transferase inhibitors: current tools and future challenges.
    Trapannone R; Rafie K; van Aalten DM
    Biochem Soc Trans; 2016 Feb; 44(1):88-93. PubMed ID: 26862193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput assay for O-GlcNAc transferase detects primary sequence preferences in peptide substrates.
    Leavy TM; Bertozzi CR
    Bioorg Med Chem Lett; 2007 Jul; 17(14):3851-4. PubMed ID: 17531489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors.
    Martin SES; Tan ZW; Itkonen HM; Duveau DY; Paulo JA; Janetzko J; Boutz PL; Törk L; Moss FA; Thomas CJ; Gygi SP; Lazarus MB; Walker S
    J Am Chem Soc; 2018 Oct; 140(42):13542-13545. PubMed ID: 30285435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.
    Oh HJ; Moon HY; Cheon SA; Hahn Y; Kang HA
    J Microbiol; 2016 Oct; 54(10):667-74. PubMed ID: 27687229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted covalent inhibition of O-GlcNAc transferase in cells.
    Worth M; Hu CW; Li H; Fan D; Estevez A; Zhu D; Wang A; Jiang J
    Chem Commun (Camb); 2019 Oct; 55(88):13291-13294. PubMed ID: 31626249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small molecule that inhibits OGT activity in cells.
    Ortiz-Meoz RF; Jiang J; Lazarus MB; Orman M; Janetzko J; Fan C; Duveau DY; Tan ZW; Thomas CJ; Walker S
    ACS Chem Biol; 2015 Jun; 10(6):1392-7. PubMed ID: 25751766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection.
    Joiner CM; Levine ZG; Aonbangkhen C; Woo CM; Walker S
    J Am Chem Soc; 2019 Aug; 141(33):12974-12978. PubMed ID: 31373491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct One-Step Fluorescent Labeling of O-GlcNAc-Modified Proteins in Live Cells Using Metabolic Intermediates.
    Tan HY; Eskandari R; Shen D; Zhu Y; Liu TW; Willems LI; Alteen MG; Madden Z; Vocadlo DJ
    J Am Chem Soc; 2018 Nov; 140(45):15300-15308. PubMed ID: 30296064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ac
    Wang H; Guo J; Wang N; Wang J; Xue Q; Wang J; Liu W; Liu K; Cao X; Zhao W; Xi R; Niu Y; Wang P; Li J
    Bioorg Med Chem Lett; 2019 Mar; 29(6):802-805. PubMed ID: 30713024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes.
    Kim EJ
    Chembiochem; 2017 Aug; 18(15):1462-1472. PubMed ID: 28474822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity.
    Iyer SP; Hart GW
    J Biol Chem; 2003 Jul; 278(27):24608-16. PubMed ID: 12724313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes.
    Hu CW; Worth M; Li H; Jiang J
    Chembiochem; 2019 Feb; 20(3):312-318. PubMed ID: 30199580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.