These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 32092906)
1. NAD Croft T; Venkatakrishnan P; Lin SJ Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32092906 [TBL] [Abstract][Full Text] [Related]
2. Cross-talk in NAD James Theoga Raj C; Lin SJ Curr Genet; 2019 Oct; 65(5):1113-1119. PubMed ID: 30993413 [TBL] [Abstract][Full Text] [Related]
3. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. Kato M; Lin SJ DNA Repair (Amst); 2014 Nov; 23():49-58. PubMed ID: 25096760 [TBL] [Abstract][Full Text] [Related]
4. NAD Groth B; Venkatakrishnan P; Lin SJ Front Mol Biosci; 2021; 8():686412. PubMed ID: 34095234 [TBL] [Abstract][Full Text] [Related]
5. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Xiao W; Wang RS; Handy DE; Loscalzo J Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096 [TBL] [Abstract][Full Text] [Related]
6. Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. Lu SP; Lin SJ J Biol Chem; 2011 Apr; 286(16):14271-81. PubMed ID: 21349851 [TBL] [Abstract][Full Text] [Related]
7. Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. Tsang F; James C; Kato M; Myers V; Ilyas I; Tsang M; Lin SJ J Biol Chem; 2015 May; 290(20):12753-64. PubMed ID: 25825491 [TBL] [Abstract][Full Text] [Related]
8. A functional link between NAD Croft T; James Theoga Raj C; Salemi M; Phinney BS; Lin SJ J Biol Chem; 2018 Feb; 293(8):2927-2938. PubMed ID: 29317496 [TBL] [Abstract][Full Text] [Related]
9. Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Lu SP; Lin SJ Biochim Biophys Acta; 2010 Aug; 1804(8):1567-75. PubMed ID: 19818879 [TBL] [Abstract][Full Text] [Related]
10. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate James Theoga Raj C; Croft T; Venkatakrishnan P; Groth B; Dhugga G; Cater T; Lin SJ J Biol Chem; 2019 Apr; 294(14):5562-5575. PubMed ID: 30760525 [TBL] [Abstract][Full Text] [Related]
11. N-terminal protein acetylation by NatB modulates the levels of Nmnats, the NAD Croft T; Venkatakrishnan P; James Theoga Raj C; Groth B; Cater T; Salemi MR; Phinney B; Lin SJ J Biol Chem; 2020 May; 295(21):7362-7375. PubMed ID: 32299909 [TBL] [Abstract][Full Text] [Related]
13. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD Groth B; Huang CC; Lin SJ J Biol Chem; 2022 Oct; 298(10):102410. PubMed ID: 36007612 [TBL] [Abstract][Full Text] [Related]
14. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. Tyibilika V; Setati ME; Bloem A; Divol B; Camarasa C Int J Food Microbiol; 2024 Feb; 411():110537. PubMed ID: 38150773 [TBL] [Abstract][Full Text] [Related]
15. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. Lu SP; Kato M; Lin SJ J Biol Chem; 2009 Jun; 284(25):17110-17119. PubMed ID: 19416965 [TBL] [Abstract][Full Text] [Related]
16. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Odoh CK; Guo X; Arnone JT; Wang X; Zhao ZK Biogerontology; 2022 Apr; 23(2):169-199. PubMed ID: 35260986 [TBL] [Abstract][Full Text] [Related]