These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32093007)

  • 21. High-Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrier-Hosting Potential Compensation.
    Tang Y; Li X; Lv H; Wang W; Yang Q; Zhi C; Li H
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5443-5452. PubMed ID: 33225532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambient-Temperature Sodium-Ion Secondary Batteries.
    Bella F; Colò F; Nair JR; Gerbaldi C
    ChemSusChem; 2015 Nov; 8(21):3668-76. PubMed ID: 26437583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Simulations of Polymer-Ionic Liquid (1-Ethyl-3-methylimidazolium Tetracyanoborate) Ternary Electrolyte for Sodium and Potassium Ion Batteries.
    de Souza RM; de Siqueira LJA; Karttunen M; Dias LG
    J Chem Inf Model; 2020 Feb; 60(2):485-499. PubMed ID: 31634431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.
    Bitenc J; Pirnat K; Bančič T; Gaberšček M; Genorio B; Randon-Vitanova A; Dominko R
    ChemSusChem; 2015 Dec; 8(24):4128-32. PubMed ID: 26610185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces.
    Yin H; Sun J; Yan X; Yang X; Feng X; Tan W; Qiu G; Zhang J; Ginder-Vogel M; Liu F
    Environ Pollut; 2020 Jan; 256():113462. PubMed ID: 31706772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical Vanadium Pentoxide Spheres as High-Performance Anode Materials for Sodium-Ion Batteries.
    Su D; Dou S; Wang G
    ChemSusChem; 2015 Sep; 8(17):2877-82. PubMed ID: 25824266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries.
    Liang S; Zhou J; Fang G; Liu J; Tang Y; Li X; Pan A
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8704-9. PubMed ID: 23947682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical behavior of alpha-MoO3 nanorods as cathode materials for rechargeable lithium batteries.
    Wen Z; Wang Q; Li J
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2117-22. PubMed ID: 17025135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance.
    Su D; Ahn HJ; Wang G
    Chem Commun (Camb); 2013 Apr; 49(30):3131-3. PubMed ID: 23478677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting the Performance of Graphene Cathodes in Na-O
    Enterría M; Gómez-Urbano JL; Munuera JM; Villar-Rodil S; Carriazo D; Paredes JI; Ortiz-Vitoriano N
    Small; 2021 Jan; 17(2):e2005034. PubMed ID: 33325651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.
    Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO
    Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ
    Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co
    Zhao Y; Pang Q; Wei Y; Wei L; Ju Y; Zou B; Gao Y; Chen G
    ChemSusChem; 2017 Dec; 10(23):4778-4785. PubMed ID: 28873282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA
    ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries.
    Li L; Seng KH; Chen Z; Guo Z; Liu HK
    Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.