BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32093025)

  • 1. Bacterial Cellulose-Alginate Composite Beads as
    Zhang S; He H; Guan S; Cai B; Li Q; Rong S
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32093025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite.
    Zhao Y; Xu Y; Jiang C
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2045-52. PubMed ID: 26091898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier.
    Żywicka A; Junka A; Ciecholewska-Juśko D; Migdał P; Czajkowska J; Fijałkowski K
    J Biotechnol; 2020 Sep; 321():13-22. PubMed ID: 32598978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Yarrowia lipolytica for aroma production from castor oil.
    Braga A; Belo I
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2202-11. PubMed ID: 23420487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds.
    Li Z; Chen X; Bao C; Liu C; Liu C; Li D; Yan H; Lin Q
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate.
    Gomes N; Teixeira JA; Belo I
    Biotechnol Lett; 2012 Apr; 34(4):649-54. PubMed ID: 22160330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica.
    Braga A; Belo I
    World J Microbiol Biotechnol; 2016 Oct; 32(10):169. PubMed ID: 27565779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. γ-decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol.
    Soares GPA; Souza KST; Vilela LF; Schwan RF; Dias DR
    Prep Biochem Biotechnol; 2017 Jul; 47(6):633-637. PubMed ID: 28151056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels.
    Wang H; Yin R; Chen X; Wu T; Bu Y; Yan H; Lin Q
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Biotransformation Productivity of Gamma-Decalactone from Ricinoleic Acid Based on the Expanded Vermiculite Delivery System.
    Guan S; Rong S; Wang M; Cai B; Li Q; Zhang S
    J Microbiol Biotechnol; 2019 Jul; 29(7):1071-1077. PubMed ID: 31337188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of δ-decalactone from linoleic acid via 13-hydroxy-9(Z)-octadecenoic acid intermediate by one-pot reaction using linoleate 13-hydratase and whole Yarrowia lipolytica cells.
    Kang WR; Seo MJ; An JU; Shin KC; Oh DK
    Biotechnol Lett; 2016 May; 38(5):817-23. PubMed ID: 26758723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.
    L Cacicedo M; E León I; S Gonzalez J; M Porto L; A Alvarez V; Castro GR
    Colloids Surf B Biointerfaces; 2016 Apr; 140():421-429. PubMed ID: 26784658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica.
    Waché Y; Aguedo M; Nicaud JM; Belin JM
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):393-404. PubMed ID: 12764554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose Derivatives Enhanced Stability of Alginate-Based Beads Loaded with Lactobacillus plantarum LAB12 against Low pH, High Temperature and Prolonged Storage.
    Fareez IM; Lim SM; Zulkefli NAA; Mishra RK; Ramasamy K
    Probiotics Antimicrob Proteins; 2018 Sep; 10(3):543-557. PubMed ID: 28493103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial cellulose as a reinforcement material of alginate beads improves effectiveness and recycling potential of immobilized photosynthetic bacteria for cooking oil waste removal.
    Saejung C; Phonaiam S; Kotthale P; Chaiyarat A
    Carbohydr Polym; 2024 Jan; 324():121532. PubMed ID: 37985061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production.
    Guo Y; Song H; Wang Z; Ding Y
    Microbiol Res; 2012 Apr; 167(4):246-52. PubMed ID: 22115771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Plasma-Treated Water on Microbial Growth and Biosynthesis of Gamma-Decalactones by
    Małajowicz J; Khachatryan K; Oszczęda Z; Karpiński P; Fabiszewska A; Zieniuk B; Krysowaty K
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.
    Arslan NP; Aydogan MN; Taskin M
    J Biotechnol; 2016 Aug; 231():32-39. PubMed ID: 27234881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial cellulose as a support for yeast immobilization - Correlation between carrier properties and process efficiency.
    Żywicka A; Banach A; Junka AF; Drozd R; Fijałkowski K
    J Biotechnol; 2019 Feb; 291():1-6. PubMed ID: 30579888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-in-water emulsions characterization by laser granulometry and impact on γ-decalactone production in Yarrowia lipolytica.
    Gomes N; Waché Y; Teixeira JA; Belo I
    Biotechnol Lett; 2011 Aug; 33(8):1601-6. PubMed ID: 21431848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.