These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32093541)

  • 1. Three-dimensional scaling laws of cetacean propulsion characterize the hydrodynamic interplay of flukes' shape and kinematics.
    Ayancik F; Fish FE; Moored KW
    J R Soc Interface; 2020 Feb; 17(163):20190655. PubMed ID: 32093541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrust generation and propulsive efficiency in dolphin-like swimming propulsion.
    Guo J; Zhang W; Han P; Fish FE; Dong H
    Bioinspir Biomim; 2023 Jul; 18(5):. PubMed ID: 37414002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Oct; 201(Pt 20):2867-77. PubMed ID: 9866875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force scaling and efficiency of elongated median fin propulsion.
    Uddin MI; Garcia GA; Curet OM
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35366647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Sep; 201(Pt 20):2867-2877. PubMed ID: 9739069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
    Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T
    Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dolphin's flukes: A mathematical model of rigid wing].
    Romanenko EV; Pushkov SG; Lopatin VN
    Zh Obshch Biol; 2015; 76(6):482-92. PubMed ID: 26852573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strouhal numbers and optimization of swimming by odontocete cetaceans.
    Rohr JJ; Fish FE
    J Exp Biol; 2004 Apr; 207(Pt 10):1633-42. PubMed ID: 15073196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of the three-dimensional geometry of cetacean flukes using computed tomography scans: hydrodynamic implications.
    Fish FE; Beneski JT; Ketten DR
    Anat Rec (Hoboken); 2007 Jun; 290(6):614-23. PubMed ID: 17516428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive cambering and flexible propulsors: cetacean flukes.
    Fish FE; Nusbaum MK; Beneski JT; Ketten DR
    Bioinspir Biomim; 2006 Dec; 1(4):S42-8. PubMed ID: 17671317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-informed scaling laws for the performance of pitching foils in schooling configurations.
    Gungor A; Khalid MSU; Hemmati A
    J R Soc Interface; 2024 Jul; 21(216):20240157. PubMed ID: 39082302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow interactions of two- and three-dimensional networked bio-inspired control elements in an in-line arrangement.
    Kurt M; Moored KW
    Bioinspir Biomim; 2018 May; 13(4):045002. PubMed ID: 29671409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion.
    Fish FE; Rybczynski N; Lauder GV; Duff CM
    Integr Comp Biol; 2021 Sep; 61(2):398-413. PubMed ID: 33881525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics and hydrodynamics analysis of swimming anurans reveals striking inter-specific differences in the mechanism for producing thrust.
    Richards CT
    J Exp Biol; 2010 Feb; 213(4):621-34. PubMed ID: 20118313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the bending pattern of non-uniformly flexible pitching hydrofoils enhances propulsive efficiency.
    Han T; Mivehchi A; Kurt M; Moored KW
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 36065966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance variation due to stiffness in a tuna-inspired flexible foil model.
    Rosic MN; Thornycroft PJ; Feilich KL; Lucas KN; Lauder GV
    Bioinspir Biomim; 2017 Jan; 12(1):016011. PubMed ID: 28094239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.