BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 32093656)

  • 1. Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum.
    Guo L; Ji M; Ye K
    BMC Genomics; 2020 Feb; 21(1):179. PubMed ID: 32093656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum.
    Guo L; Zhao G; Xu JR; Kistler HC; Gao L; Ma LJ
    New Phytol; 2016 Jul; 211(2):527-41. PubMed ID: 26990214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and Transcriptional Regulatory Mechanisms of Lipase Activity in the Plant Pathogenic Fungus Fusarium graminearum.
    Kim S; Lee J; Park J; Choi S; Bui DC; Kim JE; Shin J; Kim H; Choi GJ; Lee YW; Chang PS; Son H
    Microbiol Spectr; 2023 Jun; 11(3):e0528522. PubMed ID: 37093014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Understanding
    Niu G; Yang Q; Liao Y; Sun D; Tang Z; Wang G; Xu M; Wang C; Kang J
    Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum.
    Bormann J; Heinze C; Blum C; Mentges M; Brockmann A; Alder A; Landt SK; Josephson B; Indenbirken D; Spohn M; Plitzko B; Loesgen S; Freitag M; Schäfer W
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum.
    Lou Y; Zhang J; Wang G; Fang W; Wang S; Abubakar YS; Zhou J; Wang Z; Zheng W
    mBio; 2021 Dec; 12(6):e0232421. PubMed ID: 34933449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum.
    Qin J; Wu M; Zhou S
    Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum.
    Kim HK; Lee S; Jo SM; McCormick SP; Butchko RA; Proctor RH; Yun SH
    PLoS One; 2013; 8(7):e68441. PubMed ID: 23874628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum.
    Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839
    [No Abstract]   [Full Text] [Related]  

  • 10. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum.
    Brauer EK; Manes N; Bonner C; Subramaniam R
    Fungal Genet Biol; 2020 Jan; 134():103277. PubMed ID: 31605748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum.
    Chen Z; Zehraoui E; Atanasoff-Kardjalieff AK; Strauss J; Studt L; Ponts N
    PLoS Genet; 2020 Oct; 16(10):e1009125. PubMed ID: 33091009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and patterns of small interfering RNA associated with reduced virulence and mycotoxin production.
    Baldwin T; Islamovic E; Klos K; Schwartz P; Gillespie J; Hunter S; Bregitzer P
    PLoS One; 2018; 13(8):e0202798. PubMed ID: 30161200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum.
    Yun Y; Guo P; Zhang J; You H; Guo P; Deng H; Hao Y; Zhang L; Wang X; Abubakar YS; Zhou J; Lu G; Wang Z; Zheng W
    Mol Plant Pathol; 2020 Oct; 21(10):1307-1321. PubMed ID: 32881238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum.
    Yang P; Chen Y; Wu H; Fang W; Liang Q; Zheng Y; Olsson S; Zhang D; Zhou J; Wang Z; Zheng W
    Curr Genet; 2018 Feb; 64(1):285-301. PubMed ID: 28918485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum.
    Son H; Seo YS; Min K; Park AR; Lee J; Jin JM; Lin Y; Cao P; Hong SY; Kim EK; Lee SH; Cho A; Lee S; Kim MG; Kim Y; Kim JE; Kim JC; Choi GJ; Yun SH; Lim JY; Kim M; Lee YH; Choi YD; Lee YW
    PLoS Pathog; 2011 Oct; 7(10):e1002310. PubMed ID: 22028654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple roles of a putative vacuolar protein sorting associated protein 74, FgVPS74, in the cereal pathogen Fusarium graminearum.
    Kim HK; Kim KW; Yun SH
    J Microbiol; 2015 Apr; 53(4):243-9. PubMed ID: 25845538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum.
    Subramaniam R; Narayanan S; Walkowiak S; Wang L; Joshi M; Rocheleau H; Ouellet T; Harris LJ
    Mol Microbiol; 2015 Nov; 98(4):760-9. PubMed ID: 26248604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum.
    Song XS; Li HP; Zhang JB; Song B; Huang T; Du XM; Gong AD; Liu YK; Feng YN; Agboola RS; Liao YC
    Fungal Genet Biol; 2014 Feb; 63():24-41. PubMed ID: 24291007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum.
    Lee J; Myong K; Kim JE; Kim HK; Yun SH; Lee YW
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1723-1733. PubMed ID: 22516221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum.
    Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR
    Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.