BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32093739)

  • 1. ncHMR detector: a computational framework to systematically reveal non-classical functions of histone modification regulators.
    Hu S; Huo D; Yu Z; Chen Y; Liu J; Liu L; Wu X; Zhang Y
    Genome Biol; 2020 Feb; 21(1):48. PubMed ID: 32093739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to apply spike-in ChIP-seq to capture massive histone acetylation in human cells.
    Wu D; Wang L; Huang H
    STAR Protoc; 2021 Sep; 2(3):100681. PubMed ID: 34337446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for ChIP-seq analysis: A practical workflow and advanced applications.
    Nakato R; Sakata T
    Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data.
    Qin Q; Fan J; Zheng R; Wan C; Mei S; Wu Q; Sun H; Brown M; Zhang J; Meyer CA; Liu XS
    Genome Biol; 2020 Feb; 21(1):32. PubMed ID: 32033573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between core histone marks and DNA methyltransferases predict DNA methylation patterns observed in human cells and tissues.
    Fu K; Bonora G; Pellegrini M
    Epigenetics; 2020 Mar; 15(3):272-282. PubMed ID: 31509087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone variants as emerging regulators of embryonic stem cell identity.
    Turinetto V; Giachino C
    Epigenetics; 2015; 10(7):563-73. PubMed ID: 26114724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape.
    Fagnocchi L; Zippo A
    Methods Mol Biol; 2021; 2318():187-208. PubMed ID: 34019291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local chromatin dynamics of transcription factors imply cell-lineage specific functions during cellular differentiation.
    Tian R; Feng J; Cai X; Zhang Y
    Epigenetics; 2012 Jan; 7(1):55-62. PubMed ID: 22207356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone Modification Analysis of Low-Mappability Regions.
    Yoshizawa-Sugata N; Masai H
    Methods Mol Biol; 2023; 2519():163-185. PubMed ID: 36066721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of histone modifications by ChIP-on-chip.
    Huebert DJ; Kamal M; O'Donovan A; Bernstein BE
    Methods; 2006 Dec; 40(4):365-9. PubMed ID: 17101450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Profiling of Histone Modifications with ChIP-Seq.
    Ricci WA; Levin L; Zhang X
    Methods Mol Biol; 2020; 2072():101-117. PubMed ID: 31541441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications.
    Grzybowski AT; Shah RN; Richter WF; Ruthenburg AJ
    Nat Protoc; 2019 Dec; 14(12):3275-3302. PubMed ID: 31723301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells.
    Ram O; Goren A; Amit I; Shoresh N; Yosef N; Ernst J; Kellis M; Gymrek M; Issner R; Coyne M; Durham T; Zhang X; Donaghey J; Epstein CB; Regev A; Bernstein BE
    Cell; 2011 Dec; 147(7):1628-39. PubMed ID: 22196736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay.
    Akhtar J; More P; Albrecht S; Marini F; Kaiser W; Kulkarni A; Wojnowski L; Fontaine JF; Andrade-Navarro MA; Silies M; Berger C
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31331983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking Histone Modifications in Embryos and Low-Input Samples Using Ultrasensitive STAR ChIP-Seq.
    Zhang B; Peng X; Xu F; Xie W
    Methods Mol Biol; 2021; 2214():241-252. PubMed ID: 32944914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIP-Seq Assays from Mammalian Cartilage and Chondrocytes.
    Yamakawa A; Hojo H; Ohba S
    Methods Mol Biol; 2021; 2245():167-178. PubMed ID: 33315202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification.
    Ku WL; Nakamura K; Gao W; Cui K; Hu G; Tang Q; Ni B; Zhao K
    Nat Methods; 2019 Apr; 16(4):323-325. PubMed ID: 30923384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.