These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32093739)

  • 41. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A parallelized, automated platform enabling individual or sequential ChIP of histone marks and transcription factors.
    Dainese R; Gardeux V; Llimos G; Alpern D; Jiang JY; Meireles-Filho ACA; Deplancke B
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13828-13838. PubMed ID: 32461370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in.
    Jin H; Kasper LH; Larson JD; Wu G; Baker SJ; Zhang J; Fan Y
    Bioinformatics; 2020 Feb; 36(4):1270-1272. PubMed ID: 31566663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. histoneHMM: Differential analysis of histone modifications with broad genomic footprints.
    Heinig M; Colomé-Tatché M; Taudt A; Rintisch C; Schafer S; Pravenec M; Hubner N; Vingron M; Johannes F
    BMC Bioinformatics; 2015 Feb; 16():60. PubMed ID: 25884684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inferring nucleosome positions with their histone mark annotation from ChIP data.
    Mammana A; Vingron M; Chung HR
    Bioinformatics; 2013 Oct; 29(20):2547-54. PubMed ID: 23981350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioinformatics Methods for ChIP-seq Histone Analysis.
    Servant N
    Methods Mol Biol; 2022; 2529():267-293. PubMed ID: 35733020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide Analysis of Histone Modifications Distribution using the Chromatin Immunoprecipitation Sequencing Method in Magnaporthe oryzae.
    Wu Z; Sun W; Zhou S; Zhang L; Zhao X; Xu Y; Wang W
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34152322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrating ChIP-seq with other functional genomics data.
    Jiang S; Mortazavi A
    Brief Funct Genomics; 2018 Mar; 17(2):104-115. PubMed ID: 29579165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Going low to reach high: Small-scale ChIP-seq maps new terrain.
    Fosslie M; Manaf A; Lerdrup M; Hansen K; Gilfillan GD; Dahl JA
    Wiley Interdiscip Rev Syst Biol Med; 2020 Jan; 12(1):e1465. PubMed ID: 31478357
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state.
    Mauser R; Kungulovski G; Keup C; Reinhardt R; Jeltsch A
    Epigenetics Chromatin; 2017 Sep; 10(1):45. PubMed ID: 28946896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CR Cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse.
    Wang Q; Huang J; Sun H; Liu J; Wang J; Wang Q; Qin Q; Mei S; Zhao C; Yang X; Liu XS; Zhang Y
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D450-8. PubMed ID: 24253304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Histone variants: critical determinants in tumour heterogeneity.
    Wang T; Chuffart F; Bourova-Flin E; Wang J; Mi J; Rousseaux S; Khochbin S
    Front Med; 2019 Jun; 13(3):289-297. PubMed ID: 30280307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. User-Friendly and Interactive Analysis of ChIP-Seq Data Using EaSeq.
    Lerdrup M; Hansen K
    Methods Mol Biol; 2020; 2117():35-63. PubMed ID: 31960371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chatting histone modifications in mammals.
    Izzo A; Schneider R
    Brief Funct Genomics; 2010 Dec; 9(5-6):429-43. PubMed ID: 21266346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data.
    Zang C; Schones DE; Zeng C; Cui K; Zhao K; Peng W
    Bioinformatics; 2009 Aug; 25(15):1952-8. PubMed ID: 19505939
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting.
    Jayani RS; Ramanujam PL; Galande S
    Methods Cell Biol; 2010; 98():35-56. PubMed ID: 20816229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pinpointing the Genomic Localizations of Chromatin-Associated Proteins: The Yesterday, Today, and Tomorrow of ChIP-seq.
    Lloyd SM; Bao X
    Curr Protoc Cell Biol; 2019 Sep; 84(1):e89. PubMed ID: 31483109
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data.
    Lundberg SM; Tu WB; Raught B; Penn LZ; Hoffman MM; Lee SI
    Genome Biol; 2016 Apr; 17():82. PubMed ID: 27139377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physarum polycephalum for Studying the Function of Histone Modifications In Vivo.
    Menil-Philippot V; Thiriet C
    Methods Mol Biol; 2017; 1528():245-256. PubMed ID: 27854026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.