BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32093889)

  • 1. Crystal structure of the Měnglà virus VP30 C-terminal domain.
    Dong S; Wen K; Chu H; Li H; Yu Q; Wang C; Qin X
    Biochem Biophys Res Commun; 2020 Apr; 525(2):392-397. PubMed ID: 32093889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Měnglà Virus Proteins on Human and Bat Innate Immune Pathways.
    Williams CG; Gibbons JS; Keiffer TR; Luthra P; Edwards MR; Basler CF
    J Virol; 2020 Jun; 94(13):. PubMed ID: 32295912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the interactions between lloviu virus VP30 and nucleoprotein.
    Sun W; Luan F; Wang J; Ma L; Li X; Yang G; Hao C; Qin X; Dong S
    Biochem Biophys Res Commun; 2022 Aug; 616():82-88. PubMed ID: 35649303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses.
    Xie SZ; Yao K; Li B; Peng C; Yang XL; Shi ZL
    Virol Sin; 2024 May; ():. PubMed ID: 38782261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights on the nucleoprotein C-terminal domain of Měnglà virus.
    Ferrero DS; Tomás Gilabert O; Verdaguer N
    Microbiol Spectr; 2023 Dec; 11(6):e0237323. PubMed ID: 37888996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analyses of small molecule and antibody inhibition on glycoprotein-mediated entry of Měnglà virus with other filoviruses.
    Cooper L; Galvan Achi J; Rong L
    J Med Virol; 2022 Jul; 94(7):3263-3269. PubMed ID: 35332563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China.
    Yang XL; Tan CW; Anderson DE; Jiang RD; Li B; Zhang W; Zhu Y; Lim XF; Zhou P; Liu XL; Guan W; Zhang L; Li SY; Zhang YZ; Wang LF; Shi ZL
    Nat Microbiol; 2019 Mar; 4(3):390-395. PubMed ID: 30617348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association.
    Hartlieb B; Muziol T; Weissenhorn W; Becker S
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):624-9. PubMed ID: 17202263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylated VP30 of Marburg Virus Is a Repressor of Transcription.
    Tigabu B; Ramanathan P; Ivanov A; Lin X; Ilinykh PA; Parry CS; Freiberg AN; Nekhai S; Bukreyev A
    J Virol; 2018 Nov; 92(21):. PubMed ID: 30135121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Structure of the Marburg Virus Nucleoprotein Core Domain Chaperoned by a VP35 Peptide Reveals a Conserved Drug Target for Filovirus.
    Zhu T; Song H; Peng R; Shi Y; Qi J; Gao GF
    J Virol; 2017 Sep; 91(18):. PubMed ID: 28659479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30.
    Enterlein S; Volchkov V; Weik M; Kolesnikova L; Volchkova V; Klenk HD; Mühlberger E
    J Virol; 2006 Jan; 80(2):1038-43. PubMed ID: 16379005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis.
    Kirchdoerfer RN; Moyer CL; Abelson DM; Saphire EO
    PLoS Pathog; 2016 Oct; 12(10):e1005937. PubMed ID: 27755595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Filoviruses].
    Takada A
    Uirusu; 2012; 62(2):197-208. PubMed ID: 24153230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry.
    O'Hearn A; Wang M; Cheng H; Lear-Rooney CM; Koning K; Rumschlag-Booms E; Varhegyi E; Olinger G; Rong L
    J Virol; 2015 May; 89(10):5441-9. PubMed ID: 25741008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, validation and clinical evaluation of a broad-range pan-filovirus RT-qPCR.
    Jääskeläinen AJ; Sironen T; Diagne CT; Diagne MM; Faye M; Faye O; Faye O; Hewson R; Mölsä M; Weidmann MW; Watson R; Sall AA; Vapalahti O
    J Clin Virol; 2019 May; 114():26-31. PubMed ID: 30904708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filoviruses: Ecology, Molecular Biology, and Evolution.
    Emanuel J; Marzi A; Feldmann H
    Adv Virus Res; 2018; 100():189-221. PubMed ID: 29551136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular events and cell fate in filovirus infection.
    Olejnik J; Ryabchikova E; Corley RB; Mühlberger E
    Viruses; 2011 Aug; 3(8):1501-31. PubMed ID: 21927676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insight into Nucleoprotein Conformation Change Chaperoned by VP35 Peptide in Marburg Virus.
    Liu B; Dong S; Li G; Wang W; Liu X; Wang Y; Yang C; Rao Z; Guo Y
    J Virol; 2017 Aug; 91(16):. PubMed ID: 28566377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle.
    Martin B; Canard B; Decroly E
    Antiviral Res; 2017 May; 141():48-61. PubMed ID: 28192094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.
    Oda S; Noda T; Wijesinghe KJ; Halfmann P; Bornholdt ZA; Abelson DM; Armbrust T; Stahelin RV; Kawaoka Y; Saphire EO
    J Virol; 2016 Feb; 90(4):1839-48. PubMed ID: 26656687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.