These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32093906)

  • 1. [Boundary-layer damping of traveling waves in a three-dimensional passive finite-element model of the human cochlea].
    Böhnke F; Sigloch M
    Z Med Phys; 2020 Aug; 30(3):174-184. PubMed ID: 32093906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element simulation of cochlear traveling wave under air and bone conduction hearing.
    Ren LJ; Yu Y; Fang YQ; Hua C; Dai PD; Zhang TY
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1251-1265. PubMed ID: 33786715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX; Yoon YJ
    Hear Res; 2015 Sep; 327():136-42. PubMed ID: 26070425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflections on reflections.
    de Boer E; MacKay R
    J Acoust Soc Am; 1980 Mar; 67(3):882-90. PubMed ID: 7358913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wave finite element analysis of the passive cochlea.
    Elliott SJ; Ni G; Mace BR; Lineton B
    J Acoust Soc Am; 2013 Mar; 133(3):1535-45. PubMed ID: 23464024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinally propagating traveling waves of the mammalian tectorial membrane.
    Ghaffari R; Aranyosi AJ; Freeman DM
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16510-5. PubMed ID: 17925447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of Mössbauer mechanical measurements indicate that the cochlea is mechanically active.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Mar; 93(3):1502-15. PubMed ID: 8473603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane.
    Koike T; Sakamoto C; Sakashita T; Hayashi K; Kanzaki S; Ogawa K
    Hear Res; 2012 Jan; 283(1-2):117-25. PubMed ID: 22115725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basilar membrane motion in a spiral-shaped cochlea.
    Viergever MA
    J Acoust Soc Am; 1978 Oct; 64(4):1048-53. PubMed ID: 744829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A mechanical simulation model of the basilar membrane of the cochlea].
    Miao J; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jan; 34(1):79-83. PubMed ID: 24463122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite difference solution of a two-dimensional mathematical model of the cochlea.
    Neely ST
    J Acoust Soc Am; 1981 May; 69(5):1386-91. PubMed ID: 7240568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of a low-frequency model of the cochlea.
    Holmes MH
    J Acoust Soc Am; 1980 Aug; 68(2):482-8. PubMed ID: 7419808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR; Lim KM
    Audiol Neurootol; 1999; 4(3-4):197-203. PubMed ID: 10187930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on damage of the macrostructure of the cochlea under the impact load.
    Wang J; Liang J; Gao L; Yao W
    Proc Inst Mech Eng H; 2023 Dec; 237(12):1390-1399. PubMed ID: 37955248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency rolloff in a cochlear model without critical-layer resonance.
    Lewis ER
    J Acoust Soc Am; 1984 Sep; 76(3):779-86. PubMed ID: 6491050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-finite element model of the human cochlea including fluid-structure couplings.
    Böhnke F; Arnold W
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):305-10. PubMed ID: 10529652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model and analysis for the nonlinear amplification of waves in the cochlea.
    Fessel K; Holmes MH
    Math Biosci; 2018 Jul; 301():10-20. PubMed ID: 29382493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.