BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32094061)

  • 21. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.
    Jao LE; Wente SR; Chen W
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13904-9. PubMed ID: 23918387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Building Cre Knockin Rat Lines Using CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    Methods Mol Biol; 2017; 1642():37-52. PubMed ID: 28815492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones.
    Watanabe S; Sakurai T; Nakamura S; Miyoshi K; Sato M
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29617297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 gene editing in a chicken model: current approaches and applications.
    Chojnacka-Puchta L; Sawicka D
    J Appl Genet; 2020 May; 61(2):221-229. PubMed ID: 31925767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease.
    Qin W; Dion SL; Kutny PM; Zhang Y; Cheng AW; Jillette NL; Malhotra A; Geurts AM; Chen YG; Wang H
    Genetics; 2015 Jun; 200(2):423-30. PubMed ID: 25819794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of maternal-zygotic mutant zebrafish by germ-line replacement.
    Ciruna B; Weidinger G; Knaut H; Thisse B; Thisse C; Raz E; Schier AF
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14919-24. PubMed ID: 12397179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.
    Chen Y; Zeng S; Hu R; Wang X; Huang W; Liu J; Wang L; Liu G; Cao Y; Zhang Y
    PLoS One; 2017; 12(8):e0182528. PubMed ID: 28800611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Generation of Zebrafish Mariner Model Using the CRISPR/Cas9 System.
    Zou B; Desmidt AA; Mittal R; Yan D; Richmond M; Tekin M; Liu XZ; Lu Z
    Anat Rec (Hoboken); 2020 Mar; 303(3):556-562. PubMed ID: 31260171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation.
    Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T
    Anim Sci J; 2019 Jan; 90(1):55-61. PubMed ID: 30368976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated grna gene knockout leads to neurodevelopmental defects and motor behavior changes in zebrafish.
    Zhu J; Xu H; Song H; Li X; Wang N; Zhao J; Zheng X; Kim KY; Zhang H; Mao Q; Xia H
    J Neurochem; 2021 May; 157(3):520-531. PubMed ID: 33480022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating Stable Knockout Zebrafish Lines by Deleting Large Chromosomal Fragments Using Multiple gRNAs.
    Kim BH; Zhang G
    G3 (Bethesda); 2020 Mar; 10(3):1029-1037. PubMed ID: 31915253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of CRISPR/Cas9-mediated dnd1 knockout impairs gonadal development in striped catfish.
    Booncherd K; Sreebun S; Pasomboon P; Boonanuntanasarn S
    Animal; 2024 Jan; 18(1):101039. PubMed ID: 38103430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering.
    Kimura Y; Hisano Y; Kawahara A; Higashijima S
    Sci Rep; 2014 Oct; 4():6545. PubMed ID: 25293390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y; Liang F; Dong Z; Li S; Ye J; Qin W
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.