These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32094194)

  • 1. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength.
    Peng S; Wei Y; Gao H
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy.
    Chung H; Choi WS; Jun H; Do HS; Lee BJ; Choi PP; Han HN; Ko WS; Sohn SS
    Nat Commun; 2023 Jan; 14(1):145. PubMed ID: 36627295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy.
    Yang Y; Chen T; Tan L; Poplawsky JD; An K; Wang Y; Samolyuk GD; Littrell K; Lupini AR; Borisevich A; George EP
    Nature; 2021 Jul; 595(7866):245-249. PubMed ID: 34234333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain hardening recovery mediated by coherent precipitates in lightweight steel.
    Kim SD; Park SJ; Jang JH; Moon J; Ha HY; Lee CH; Park H; Shin JH; Lee TH
    Sci Rep; 2021 Jul; 11(1):14468. PubMed ID: 34262073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility.
    Wu X; Yuan F; Yang M; Jiang P; Zhang C; Chen L; Wei Y; Ma E
    Sci Rep; 2015 Jun; 5():11728. PubMed ID: 26122728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube.
    Kiani MT; Wang Y; Bertin N; Cai W; Gu XW
    Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels.
    Wang F; Song M; Elkot MN; Yao N; Sun B; Song M; Wang Z; Raabe D
    Science; 2024 May; 384(6699):1017-1022. PubMed ID: 38815014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
    Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z
    Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High dislocation density-induced large ductility in deformed and partitioned steels.
    He BB; Hu B; Yen HW; Cheng GJ; Wang ZK; Luo HW; Huang MX
    Science; 2017 Sep; 357(6355):1029-1032. PubMed ID: 28839008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys.
    Zhang Z; Liu CT; Miller MK; Wang XL; Wen Y; Fujita T; Hirata A; Chen M; Chen G; Chin BA
    Sci Rep; 2013; 3():1327. PubMed ID: 23429646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous enhancement of strength and ductility
    Yang L; Liang D; Cheng Z; Duan R; Zhong C; Luan J; Jiao Z; Ren F
    Fundam Res; 2024 Jan; 4(1):147-157. PubMed ID: 38933833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy.
    Du XH; Li WP; Chang HT; Yang T; Duan GS; Wu BL; Huang JC; Chen FR; Liu CT; Chuang WS; Lu Y; Sui ML; Huang EW
    Nat Commun; 2020 May; 11(1):2390. PubMed ID: 32404913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.
    Zhang Z; Sheng H; Wang Z; Gludovatz B; Zhang Z; George EP; Yu Q; Mao SX; Ritchie RO
    Nat Commun; 2017 Feb; 8():14390. PubMed ID: 28218267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origins of high hardening and low ductility in magnesium.
    Wu Z; Curtin WA
    Nature; 2015 Oct; 526(7571):62-7. PubMed ID: 26390153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative enthalpy alloys and local chemical ordering: a concept and route leading to synergy of strength and ductility.
    An Z; Yang T; Shi C; Mao S; Wang L; Li A; Li W; Xue X; Sun M; Bai Y; He Y; Ren F; Lu Z; Yan M; Ren Y; Liu CT; Zhang Z; Han X
    Natl Sci Rev; 2024 Apr; 11(4):nwae026. PubMed ID: 38405434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing instability for work hardening in multi-principal element alloys.
    Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X
    Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring Strength and Ductility of a Cr-Containing High Carbon Steel by Cold-Working and Annealing.
    Wang J; Shen Y; Liu Y; Wang F; Jia N
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
    Fan L; Yang T; Zhao Y; Luan J; Zhou G; Wang H; Jiao Z; Liu CT
    Nat Commun; 2020 Dec; 11(1):6240. PubMed ID: 33288762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.