BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3209424)

  • 1. A quantitative cytochemical assay for osteoclast acid phosphatase activity in foetal rat calvaria.
    Webber DM; Braidman IP; Robertson WR; Anderson DC
    Histochem J; 1988 May; 20(5):269-75. PubMed ID: 3209424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of tartrate on bone cell acid phosphatase activity: a quantitative cytochemical study.
    Webber D; Braidman IP; Robertson WR; Anderson DC
    J Bone Miner Res; 1989 Dec; 4(6):809-15. PubMed ID: 2610018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different tartrate sensitivity and pH optimum for two isoenzymes of acid phosphatase in osteoclasts. An electron-microscopic enzyme-cytochemical study.
    Akisaka T; Subita GP; Kawaguchi H; Shigenaga Y
    Cell Tissue Res; 1989 Jan; 255(1):69-76. PubMed ID: 2661005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for a functional role in bone resorption.
    Moonga BS; Moss DW; Patchell A; Zaidi M
    J Physiol; 1990 Oct; 429():29-45. PubMed ID: 2277349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of osteoclast precursors in fetal rat calvaria cultured on collagen gels.
    Braidman IP; Rothwell C; Webber DM; Crowe P; Anderson DC
    J Bone Miner Res; 1990 Mar; 5(3):287-98. PubMed ID: 2333788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chick osteoblasts contain fluoride-sensitive acid phosphatase activity.
    Lundy MW; Lau KH; Blair HC; Baylink DJ
    J Histochem Cytochem; 1988 Sep; 36(9):1175-80. PubMed ID: 3403968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A histochemical study of acid phosphatases in medullary bone matrix and osteoclasts in laying Japanese quail.
    Yamamoto T; Nagai H
    J Bone Miner Res; 1992 Nov; 7(11):1267-73. PubMed ID: 1281604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histochemical identification of osteoclasts. Review of current methods and reappraisal of a simple procedure for routine diagnosis on undecalcified human iliac bone biopsies.
    Chappard D; Alexandre C; Riffat G
    Basic Appl Histochem; 1983; 27(2):75-85. PubMed ID: 6193776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of tartrate-resistant acid phosphatase in un-decalcified, glycolmethacrylate-embedded mouse bone: a possible marker for (pre)osteoclast identification.
    van de Wijngaert FP; Burger EH
    J Histochem Cytochem; 1986 Oct; 34(10):1317-23. PubMed ID: 3745910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tartrate-resistant acid phosphatase in bone and cartilage following decalcification and cold-embedding in plastic.
    Cole AA; Walters LM
    J Histochem Cytochem; 1987 Feb; 35(2):203-6. PubMed ID: 3540104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tartrate-resistant acid phosphatase activity in tibial osteoclasts and cells elicited by ectopic bone and suture implants in normal and osteopetrotic rats.
    Walters LM; Schneider GB
    Bone Miner; 1988 Apr; 4(1):49-62. PubMed ID: 3056541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tartrate-resistant acid ATPase as a cytochemical marker for osteoclasts.
    Andersson GN; Marks SC
    J Histochem Cytochem; 1989 Jan; 37(1):115-7. PubMed ID: 2461980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function.
    Minkin C
    Calcif Tissue Int; 1982 May; 34(3):285-90. PubMed ID: 6809291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytochemistry of tartrate-resistant acid phosphatase. Technical considerations.
    Janckila AJ; Li CY; Lam KW; Yam LT
    Am J Clin Pathol; 1978 Jul; 70(1):45-55. PubMed ID: 80957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of rat osteoclasts in bone smears with quantification of acid phosphatase activity in vitamin D deficiency.
    Silverton SF; Kaye M
    Bone; 1987; 8(4):241-4. PubMed ID: 3446260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+.
    Lehenkari P; Hentunen TA; Laitala-Leinonen T; Tuukkanen J; Väänänen HK
    Exp Cell Res; 1998 Jul; 242(1):128-37. PubMed ID: 9665810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic effect of calcitonin on tartrate-resistant acid phosphatase activity in isolated rat osteoclasts.
    Yumita S; Nicholson GC; Rowe DJ; Kent GN; Martin TJ
    J Bone Miner Res; 1991 Jun; 6(6):591-7. PubMed ID: 1887822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthol-ASBI phosphate as a preferred substrate for tartrate-resistant acid phosphatase isoform 5b.
    Janckila AJ; Takahashi K; Sun SZ; Yam LT
    J Bone Miner Res; 2001 Apr; 16(4):788-93. PubMed ID: 11316008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclast responses to lipopolysaccharide, parathyroid hormone and bisphosphonates in neonatal murine calvaria analyzed by laser scanning confocal microscopy.
    Suzuki K; Takeyama S; Kikuchi T; Yamada S; Sodek J; Shinoda H
    J Histochem Cytochem; 2005 Dec; 53(12):1525-37. PubMed ID: 16087705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin inhibits osteoclastic bone resorption by a direct effect on cell motility: implications for the vascular control of bone resorption.
    Alam AS; Gallagher A; Shankar V; Ghatei MA; Datta HK; Huang CL; Moonga BS; Chambers TJ; Bloom SR; Zaidi M
    Endocrinology; 1992 Jun; 130(6):3617-24. PubMed ID: 1597159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.