These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32094349)
1. Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China. Wang Y; Xu X; Liu T; Wang H; Yang Y; Chen X; Zhu S Sci Rep; 2020 Feb; 10(1):3264. PubMed ID: 32094349 [TBL] [Abstract][Full Text] [Related]
2. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). Zhu S; Wang Y; Xu X; Liu T; Wu D; Zheng X; Tang S; Dai Q PLoS One; 2018; 13(5):e0197095. PubMed ID: 29750808 [TBL] [Abstract][Full Text] [Related]
3. Identification of the rhizospheric microbe and metabolites that led by the continuous cropping of ramie (Boehmeria nivea L. Gaud). Wang Y; Zhu S; Liu T; Guo B; Li F; Bai X Sci Rep; 2020 Nov; 10(1):20408. PubMed ID: 33230149 [TBL] [Abstract][Full Text] [Related]
4. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. Song X; Pan Y; Li L; Wu X; Wang Y PLoS One; 2018; 13(3):e0193811. PubMed ID: 29538438 [TBL] [Abstract][Full Text] [Related]
5. Assessing the biodiversity of rhizosphere and endophytic fungi in Knoxia valerianoides under continuous cropping conditions. Liu C; Zhang L; Li H; He X; Dong J; Qiu B BMC Microbiol; 2024 Jun; 24(1):195. PubMed ID: 38849736 [TBL] [Abstract][Full Text] [Related]
6. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Tan Y; Cui Y; Li H; Kuang A; Li X; Wei Y; Ji X Microbiol Res; 2017 Jan; 194():10-19. PubMed ID: 27938858 [TBL] [Abstract][Full Text] [Related]
7. Study on the Diversity of Fungal and Bacterial Communities in Continuous Cropping Fields of Chinese Chives ( Gu Y; Wang Y; Wang P; Wang C; Ma J; Yang X; Ma D; Li M Biomed Res Int; 2020; 2020():3589758. PubMed ID: 33381549 [TBL] [Abstract][Full Text] [Related]
8. Variations of microbial community in Aconitum carmichaeli Debx. rhizosphere soilin a short-term continuous cropping system. Fei X; Lina W; Jiayang C; Meng F; Guodong W; Yaping Y; Langjun C J Microbiol; 2021 May; 59(5):481-490. PubMed ID: 33779961 [TBL] [Abstract][Full Text] [Related]
9. [Effects of Aeration Methods on Microbial Diversity and Community Structure in Rice Rhizosphere]. Xiao DS; Xu CM; Wang DY; Chen S; Chu G; Liu YH Huan Jing Ke Xue; 2023 Nov; 44(11):6362-6376. PubMed ID: 37973118 [TBL] [Abstract][Full Text] [Related]
10. [Variation in fungal community structures in rhizosphere soil of Coptis chinensis with cropping mode under natural forest and artificial shed]. Yu W; Jun T; Xiao-Li WU; Rang-Yu MO; Da-Xia C Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(21):5160-5168. PubMed ID: 33350231 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Bai L; Cui J; Jie W; Cai B Microbiol Res; 2015 Nov; 180():49-56. PubMed ID: 26505311 [TBL] [Abstract][Full Text] [Related]
12. Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining. Wei Y; Chen Z; Wu F; Li J; ShangGuan Y; Li F; Zeng QR; Hou H J Microbiol Biotechnol; 2015 Aug; 25(8):1205-15. PubMed ID: 25876600 [TBL] [Abstract][Full Text] [Related]
13. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Wang S; Cheng J; Li T; Liao Y Sci Rep; 2020 Nov; 10(1):19911. PubMed ID: 33199813 [TBL] [Abstract][Full Text] [Related]
14. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system. Ahsan T; Tian PC; Gao J; Wang C; Liu C; Huang YQ J Adv Res; 2024 Oct; 64():1-13. PubMed ID: 38030126 [TBL] [Abstract][Full Text] [Related]
15. Analysis of rhizosphere fungal diversity in lavender at different planting years based on high-throughput sequencing technology. Deng X; Shi R; Elnour RO; Guo Z; Wang J; Liu W; Li G; Jiao Z PLoS One; 2024; 19(10):e0310929. PubMed ID: 39361671 [TBL] [Abstract][Full Text] [Related]
16. Metagenomic profiling of rhizosphere microbial community structure and diversity associated with maize plant as affected by cropping systems. Fadiji AE; Kanu JO; Babalola OO Int Microbiol; 2021 Aug; 24(3):325-335. PubMed ID: 33666787 [TBL] [Abstract][Full Text] [Related]
17. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. Zhang S; Wang Y; Sun L; Qiu C; Ding Y; Gu H; Wang L; Wang Z; Ding Z BMC Microbiol; 2020 Apr; 20(1):103. PubMed ID: 32349665 [TBL] [Abstract][Full Text] [Related]
18. Effects of Continuous Sugar Beet Cropping on Rhizospheric Microbial Communities. Huang W; Sun D; Fu J; Zhao H; Wang R; An Y Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31877827 [TBL] [Abstract][Full Text] [Related]
19. Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (Boehmeria nivea) and a nonaccumulator (Artemisia annua) in an antimony mine. Lin Y; Zhang Y; Liang X; Duan R; Yang L; Du Y; Wu L; Huang J; Xiang G; Bai J; Zhen Y J Appl Microbiol; 2022 May; 132(5):3432-3443. PubMed ID: 35156279 [TBL] [Abstract][Full Text] [Related]
20. Long-term watermelon continuous cropping leads to drastic shifts in soil bacterial and fungal community composition across gravel mulch fields. Gu X; Yang N; Zhao Y; Liu W; Li T BMC Microbiol; 2022 Aug; 22(1):189. PubMed ID: 35918663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]