BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32095695)

  • 1. Detachment Behavior of Single-Curved/NonCurved Particles from Ultrasound-Assisted Oscillation Bubbles.
    Ma G; Xia W
    ACS Omega; 2020 Feb; 5(6):2718-2724. PubMed ID: 32095695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insights into the Role of Surface Nanobubbles in Bubble-Particle Detachment.
    Ding S; Xing Y; Zheng X; Zhang Y; Cao Y; Gui X
    Langmuir; 2020 Apr; 36(16):4339-4346. PubMed ID: 32237714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of Bubble Interfaces Stabilized by Particles of Different Densities.
    Bournival G; Ata S; Wanless EJ
    Langmuir; 2016 Jun; 32(25):6226-38. PubMed ID: 27223404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of particles in multiphase processes: Particles on bubble surfaces.
    Bournival G; Ata S; Wanless EJ
    Adv Colloid Interface Sci; 2015 Nov; 225():114-33. PubMed ID: 26344866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Particle Size and Hydrophobicity on Bubble-Particle Collision Detachment at the Slurry-Foam Phase Interface.
    Zhang Y; Ding S; Si W; Yin Q; Yang C; Shi W; Xing Y; Gui X
    ACS Omega; 2024 Jan; 9(4):4966-4973. PubMed ID: 38313480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of single bubble cleaning.
    Reuter F; Mettin R
    Ultrason Sonochem; 2016 Mar; 29():550-62. PubMed ID: 26187759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous motion of particles attached to cavitation bubbles.
    Xu F; Liu Y; Chen M; Luo J; Bai L
    Ultrason Sonochem; 2024 Jul; 107():106888. PubMed ID: 38697875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces.
    Sherman H; Nguyen AV; Bruckard W
    Langmuir; 2016 Nov; 32(46):12022-12030. PubMed ID: 27779873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The detachment of particles from coalescing bubble pairs.
    Ata S
    J Colloid Interface Sci; 2009 Oct; 338(2):558-65. PubMed ID: 19656520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of the attachment behavior of hydrophobic colloidal particles onto a bubble surface.
    Arai N; Watanabe S; Miyahara MT; Yamamoto R; Hampel U; Lecrivain G
    Soft Matter; 2020 Jan; 16(3):695-702. PubMed ID: 31815273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics.
    Tan SY; Ata S; Wanless EJ
    J Phys Chem B; 2013 Jul; 117(28):8579-88. PubMed ID: 23796213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microflotation Suppression and Enhancement Caused by Particle/Bubble Electrostatic Interaction.
    Mishchuk NA; Koopal LK; Dukhin SS
    J Colloid Interface Sci; 2001 May; 237(2):208-223. PubMed ID: 11334536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale interactions of liquid, bubbles and solid phases in ultrasonic fields revealed by multiphysics modelling and ultrafast X-ray imaging.
    Qin L; Porfyrakis K; Tzanakis I; Grobert N; Eskin DG; Fezzaa K; Mi J
    Ultrason Sonochem; 2022 Sep; 89():106158. PubMed ID: 36103805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble Manipulation Driven by Alternating Current Electrowetting: Oscillation Modes and Surface Detachment.
    Sun Z; Zhuang L; Wei M; Sun H; Liu F; Tang B; Groenewold J; Zhou G
    Langmuir; 2021 Jun; 37(23):6898-6904. PubMed ID: 34060843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between particles and bubbles driven by ultrasound: Acoustic radiation force on an elastic particle immersed in the ideal fluid near a bubble.
    Feng K; Wang C; Mo R; Hu J; Li S
    Ultrason Sonochem; 2020 Oct; 67():105166. PubMed ID: 32454445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution.
    Ye L; Zhu X; Liu Y
    Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Particle Size on the Rising Behavior of Particle-Laden Bubbles.
    Wang P; Cilliers JJ; Neethling SJ; Brito-Parada PR
    Langmuir; 2019 Mar; 35(10):3680-3687. PubMed ID: 30785756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh.
    Sokka SD; King R; Hynynen K
    Phys Med Biol; 2003 Jan; 48(2):223-41. PubMed ID: 12587906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.