These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32096380)

  • 1. [A multifrequency time-difference electrical impedance tomography algorithm using spectral constraints].
    Cao L; Yang B; Li H; Liu X; Liu B; Xu C; Liu R; Fu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):80-86. PubMed ID: 32096380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifrequency electrical impedance tomography using spectral constraints.
    Malone E; Sato Dos Santos G; Holder D; Arridge S
    IEEE Trans Med Imaging; 2014 Feb; 33(2):340-50. PubMed ID: 24122550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel time-difference electrical impedance tomography algorithm using multi-frequency information.
    Cao L; Li H; Xu C; Dai M; Ji Z; Shi X; Dong X; Fu F; Yang B
    Biomed Eng Online; 2019 Jul; 18(1):84. PubMed ID: 31358013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An iterative damped least-squares algorithm for simultaneously monitoring the development of hemorrhagic and secondary ischemic lesions in brain injuries.
    Liu X; Li H; Ma H; Xu C; Yang B; Dai M; Dong X; Fu F
    Med Biol Eng Comput; 2019 Sep; 57(9):1917-1931. PubMed ID: 31250276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo.
    Mayer M; Brunner P; Merwa R; Smolle-Jüttner FM; Maier A; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S93-101. PubMed ID: 16636423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography.
    Liu X; Zhang T; Ye J; Tian X; Zhang W; Yang B; Dai M; Xu C; Fu F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image Reconstruction in Electrical Impedance Tomography Based on Structure-Aware Sparse Bayesian Learning.
    Liu S; Jia J; Zhang YD; Yang Y
    IEEE Trans Med Imaging; 2018 Sep; 37(9):2090-2102. PubMed ID: 29994084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture.
    Lee EJ; Wi H; McEwan AL; Farooq A; Sohal H; Woo EJ; Seo JK; Oh TI
    Biomed Eng Online; 2014 Oct; 13():142. PubMed ID: 25286865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multifrequency serial EIT system.
    Chauveau N; Ayeva B; Rigaud B; Morucci JP
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A7-13. PubMed ID: 9001597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Image reconstruction in electrical impedance tomography based on genetic algorithm].
    Hou W; Mo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):107-10. PubMed ID: 12744177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution conductivity reconstruction by electrical impedance tomography using structure-aware hybrid-fusion learning.
    Yu H; Liu H; Liu Z; Wang Z; Jia J
    Comput Methods Programs Biomed; 2024 Jan; 243():107861. PubMed ID: 37931580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifrequency electrical impedance tomography with total variation regularization.
    Zhou Z; Dowrick T; Malone E; Avery J; Li N; Sun Z; Xu H; Holder D
    Physiol Meas; 2015 Sep; 36(9):1943-61. PubMed ID: 26245292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape deformation in two-dimensional electrical impedance tomography.
    Boyle A; Adler A; Lionheart WR
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2185-93. PubMed ID: 22711769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Impedance Tomography reconstruction using l1 norms for data and image terms.
    Dai T; Adler A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2721-4. PubMed ID: 19163267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions.
    Babaeizadeh S; Brooks DH
    IEEE Trans Med Imaging; 2007 May; 26(5):637-47. PubMed ID: 17518058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher order total variation regularization for EIT reconstruction.
    Gong B; Schullcke B; Krueger-Ziolek S; Zhang F; Mueller-Lisse U; Moeller K
    Med Biol Eng Comput; 2018 Aug; 56(8):1367-1378. PubMed ID: 29308547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.