These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32096607)

  • 1. Fused Tetrathiafulvalene and Benzoquinone Triads: Organic Positive-Electrode Materials Based on a Dual Redox System.
    Misaki Y; Noda S; Kato M; Yamauchi T; Oshima T; Yoshimura A; Shirahata T; Yao M
    ChemSusChem; 2020 May; 13(9):2312-2320. PubMed ID: 32096607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New tris- and pentakis-fused donors containing extended tetrathiafulvalenes: New positive electrode materials for rechargeable batteries.
    Iwamoto S; Inatomi Y; Ogi D; Shibayama S; Murakami Y; Kato M; Takahashi K; Tanaka K; Hojo N; Misaki Y
    Beilstein J Org Chem; 2015; 11():1136-47. PubMed ID: 26199670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bis- and Tris-fused Tetrathiafulvalenes Extended with Anthracene-9,10-diylidene.
    Ogi D; Fujita Y; Mori S; Shirahata T; Misaki Y
    Org Lett; 2016 Nov; 18(22):5868-5871. PubMed ID: 27934508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries.
    Bitenc J; Pavčnik T; Košir U; Pirnat K
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrathiafulvalene-based mixed-valence acceptor-donor-acceptor triads: a joint theoretical and experimental approach.
    Calbo J; Aragó J; Otón F; Lloveras V; Mas-Torrent M; Vidal-Gancedo J; Veciana J; Rovira C; Ortí E
    Chemistry; 2013 Dec; 19(49):16656-64. PubMed ID: 24281812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-Switchable Bis-fused Tetrathiafulvalene Analogue: Observation and Control of Two Different Reduction Processes from Dication to Neutral State.
    Kato M; Fujita Y; Yamauchi T; Mori S; Shirahata T; Misaki Y
    Org Lett; 2018 Sep; 20(17):5121-5125. PubMed ID: 30129770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Properties of Bis(2,5-dimethylpyrrolo[3,4-d])tetrathiafulvalenes, a Class of Annelated Tetrathiafulvalene Derivatives with Excellent Electron Donor Properties.
    Zong K; Chen W; Cava MP; Rogers RD
    J Org Chem; 1996 Nov; 61(23):8117-8124. PubMed ID: 11667799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrathiafulvalene-Inserted Diphenoquinone: Synthesis, Structure, and Dynamic Redox Property.
    Mitsuoka M; Sakamaki D; Fujiwara H
    Chemistry; 2020 Nov; 26(62):14144-14151. PubMed ID: 32542868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in Cycle Life of Organic Lithium-Ion Batteries by In-Cell Polymerization of Tetrathiafulvalene-Based Electrode Materials.
    Yoshimura A; Hemmi K; Moriwaki H; Sakakibara R; Kimura H; Aso Y; Kinoshita N; Suizu R; Shirahata T; Yao M; Yorimitsu H; Awaga K; Misaki Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35978-35984. PubMed ID: 35894872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel fused D-A dyad and A-D-A triad incorporating tetrathiafulvalene and p-benzoquinone.
    Dumur F; Gautier N; Gallego-Planas N; Sahin Y; Levillain E; Mercier N; Hudhomme P; Masino M; Girlando A; Lloveras V; Vidal-Gancedo J; Veciana J; Rovira C
    J Org Chem; 2004 Mar; 69(6):2164-77. PubMed ID: 15058966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Active Macrocycles for Organic Rechargeable Batteries.
    Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF
    J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Bis-Fused pi-Electron Donors for Organic Metals: 2-(1,3-Dithiol-2-ylidene)-5-(thiopyran-4-ylidene)-1,3,4,6-tetrathiapentalene.
    Misaki Y; Fujiwara H; Yamabe T
    J Org Chem; 1996 May; 61(11):3650-3656. PubMed ID: 11667211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures and redox responses coupled with ion recognition of p-benzoquinone- and hydroquinone-fused [18]crown-6.
    Kobayashi T; Nakane Y; Takeda T; Hoshino N; Kawai H; Akutagawa T
    Chem Asian J; 2015 Feb; 10(2):390-6. PubMed ID: 25505003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries.
    Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H
    Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries.
    Luo Z; Liu L; Zhao Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12561-12565. PubMed ID: 28787540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements.
    Kanzaki Y; Mitani S; Shiomi D; Morita Y; Takui T; Sato K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43631-43640. PubMed ID: 30461254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halide-Based Materials and Chemistry for Rechargeable Batteries.
    Zhao X; Zhao-Karger Z; Fichtner M; Shen X
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5902-5949. PubMed ID: 31359549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.