These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1112 related articles for article (PubMed ID: 32096876)

  • 1. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics.
    Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K
    Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients.
    Sugai Y; Kadoya N; Tanaka S; Tanabe S; Umeda M; Yamamoto T; Takeda K; Dobashi S; Ohashi H; Takeda K; Jingu K
    Radiat Oncol; 2021 Apr; 16(1):80. PubMed ID: 33931085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer.
    Yang B; Zhou L; Zhong J; Lv T; Li A; Ma L; Zhong J; Yin S; Huang L; Zhou C; Li X; Ge YQ; Tao X; Zhang L; Son Y; Lu G
    Respir Res; 2021 Jun; 22(1):189. PubMed ID: 34183009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homological radiomics analysis for prognostic prediction in lung cancer patients.
    Ninomiya K; Arimura H
    Phys Med; 2020 Jan; 69():90-100. PubMed ID: 31855844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application and limitation of radiomics approach to prognostic prediction for lung stereotactic body radiotherapy using breath-hold CT images with random survival forest: A multi-institutional study.
    Kakino R; Nakamura M; Mitsuyoshi T; Shintani T; Kokubo M; Negoro Y; Fushiki M; Ogura M; Itasaka S; Yamauchi C; Otsu S; Sakamoto T; Sakamoto M; Araki N; Hirashima H; Adachi T; Matsuo Y; Mizowaki T
    Med Phys; 2020 Sep; 47(9):4634-4643. PubMed ID: 32645224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features.
    Soufi M; Arimura H; Nagami N
    Med Phys; 2018 Nov; 45(11):5116-5128. PubMed ID: 30230556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer.
    Huynh E; Coroller TP; Narayan V; Agrawal V; Hou Y; Romano J; Franco I; Mak RH; Aerts HJ
    Radiother Oncol; 2016 Aug; 120(2):258-66. PubMed ID: 27296412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis.
    Haga A; Takahashi W; Aoki S; Nawa K; Yamashita H; Abe O; Nakagawa K
    Radiol Phys Technol; 2018 Mar; 11(1):27-35. PubMed ID: 29209915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery.
    Kirienko M; Cozzi L; Antunovic L; Lozza L; Fogliata A; Voulaz E; Rossi A; Chiti A; Sollini M
    Eur J Nucl Med Mol Imaging; 2018 Feb; 45(2):207-217. PubMed ID: 28944403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.
    van Timmeren JE; Leijenaar RTH; van Elmpt W; Reymen B; Oberije C; Monshouwer R; Bussink J; Brink C; Hansen O; Lambin P
    Radiother Oncol; 2017 Jun; 123(3):363-369. PubMed ID: 28506693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.
    Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y
    J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: Evaluation of the added prognostic value for overall survival and locoregional recurrence.
    van Timmeren JE; van Elmpt W; Leijenaar RTH; Reymen B; Monshouwer R; Bussink J; Paelinck L; Bogaert E; De Wagter C; Elhaseen E; Lievens Y; Hansen O; Brink C; Lambin P
    Radiother Oncol; 2019 Jul; 136():78-85. PubMed ID: 31015133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma.
    Amini M; Nazari M; Shiri I; Hajianfar G; Deevband MR; Abdollahi H; Arabi H; Rahmim A; Zaidi H
    Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34544053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of radiomics models for survival prediction in non-small-cell lung cancer: influence of CT slice thickness.
    Park S; Lee SM; Kim S; Choi S; Kim W; Do KH; Seo JB
    Eur Radiol; 2021 May; 31(5):2856-2865. PubMed ID: 33128185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative nomogram of CT imaging, clinical, and hematological features for survival prediction of patients with locally advanced non-small cell lung cancer.
    Wang L; Dong T; Xin B; Xu C; Guo M; Zhang H; Feng D; Wang X; Yu J
    Eur Radiol; 2019 Jun; 29(6):2958-2967. PubMed ID: 30643940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT radiomics-based model for predicting TMB and immunotherapy response in non-small cell lung cancer.
    Wang J; Wang J; Huang X; Zhou Y; Qi J; Sun X; Nie J; Hu Z; Wang S; Hong B; Wang H
    BMC Med Imaging; 2024 Feb; 24(1):45. PubMed ID: 38360550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis.
    Sun W; Jiang M; Dang J; Chang P; Yin FF
    Radiat Oncol; 2018 Oct; 13(1):197. PubMed ID: 30290849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients.
    Yang L; Yang J; Zhou X; Huang L; Zhao W; Wang T; Zhuang J; Tian J
    Eur Radiol; 2019 May; 29(5):2196-2206. PubMed ID: 30523451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of CT radiomic features combined with clinical factors in predicting prognosis in patients with limited-stage small cell lung cancer.
    Wu J; Zhou Y; Xu C; Yang C; Liu B; Zhao L; Song J; Wang W; Yang Y; Liu N
    BMC Cancer; 2024 Feb; 24(1):170. PubMed ID: 38310283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of thoracic four-dimensional CT-based dimension reduction technique for extracting the robust radiomic features.
    Tanaka S; Kadoya N; Kajikawa T; Matsuda S; Dobashi S; Takeda K; Jingu K
    Phys Med; 2019 Feb; 58():141-148. PubMed ID: 30824145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.