These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1033 related articles for article (PubMed ID: 32096876)
41. Development and Validation of a Radiomics Nomogram Based on Yang B; Zhong J; Zhong J; Ma L; Li A; Ji H; Zhou C; Duan S; Wang Q; Zhu C; Tian J; Zhang L; Wang F; Zhu H; Lu G Front Oncol; 2020; 10():1042. PubMed ID: 32766134 [No Abstract] [Full Text] [Related]
42. Stability of radiomic features in CT perfusion maps. Bogowicz M; Riesterer O; Bundschuh RA; Veit-Haibach P; Hüllner M; Studer G; Stieb S; Glatz S; Pruschy M; Guckenberger M; Tanadini-Lang S Phys Med Biol; 2016 Dec; 61(24):8736-8749. PubMed ID: 27893446 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of the MVCT-based radiomic features as prognostic factor in patients with head and neck squamous cell carcinoma. Abe K; Kadoya N; Ito K; Tanaka S; Nakajima Y; Hashimoto S; Suda Y; Uno T; Jingu K BMC Med Imaging; 2023 Aug; 23(1):102. PubMed ID: 37528392 [TBL] [Abstract][Full Text] [Related]
44. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Fornacon-Wood I; Mistry H; Ackermann CJ; Blackhall F; McPartlin A; Faivre-Finn C; Price GJ; O'Connor JPB Eur Radiol; 2020 Nov; 30(11):6241-6250. PubMed ID: 32483644 [TBL] [Abstract][Full Text] [Related]
45. A prognostic analysis method for non-small cell lung cancer based on the computed tomography radiomics. Wang X; Duan H; Li X; Ye X; Huang G; Nie S Phys Med Biol; 2020 Feb; 65(4):045006. PubMed ID: 31962301 [TBL] [Abstract][Full Text] [Related]
46. Prognostic Prediction of Cancer Based on Radiomics Features of Diagnostic Imaging: The Performance of Machine Learning Strategies. Tang FH; Xue C; Law MY; Wong CY; Cho TH; Lai CK J Digit Imaging; 2023 Jun; 36(3):1081-1090. PubMed ID: 36781589 [TBL] [Abstract][Full Text] [Related]
47. Radiomic score for lung nodules as a prognostic biomarker in locally advanced rectal cancer patients: A bi-institutional study. Zhang Z; Wang J; Dai D; Xia F; Sun Y; Li G; Wan J; Shen L; Zhang H; Wang Y; Zhong J; Bao J; Zhang Z Cancer Med; 2024 Jun; 13(12):e7240. PubMed ID: 38923236 [TBL] [Abstract][Full Text] [Related]
49. A radiomic approach to predicting nodal relapse and disease-specific survival in patients treated with stereotactic body radiation therapy for early-stage non-small cell lung cancer. Franceschini D; Cozzi L; De Rose F; Navarria P; Fogliata A; Franzese C; Pezzulla D; Tomatis S; Reggiori G; Scorsetti M Strahlenther Onkol; 2020 Oct; 196(10):922-931. PubMed ID: 31722061 [TBL] [Abstract][Full Text] [Related]
50. Novel Non-Invasive Radiomic Signature on CT Scans Predicts Response to Platinum-Based Chemotherapy and Is Prognostic of Overall Survival in Small Cell Lung Cancer. Jain P; Khorrami M; Gupta A; Rajiah P; Bera K; Viswanathan VS; Fu P; Dowlati A; Madabhushi A Front Oncol; 2021; 11():744724. PubMed ID: 34745966 [TBL] [Abstract][Full Text] [Related]
51. Standardization of imaging features for radiomics analysis. Haga A; Takahashi W; Aoki S; Nawa K; Yamashita H; Abe O; Nakagawa K J Med Invest; 2019; 66(1.2):35-37. PubMed ID: 31064950 [TBL] [Abstract][Full Text] [Related]
52. Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding. Khodabakhshi Z; Amini M; Hajianfar G; Oveisi M; Shiri I; Zaidi H Clin Oncol (R Coll Radiol); 2023 Nov; 35(11):713-725. PubMed ID: 37599160 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of the performance of both machine learning models using PET and CT radiomics for predicting recurrence following lung stereotactic body radiation therapy: A single-institutional study. Nemoto H; Saito M; Satoh Y; Komiyama T; Marino K; Aoki S; Suzuki H; Sano N; Nonaka H; Watanabe H; Funayama S; Onishi H J Appl Clin Med Phys; 2024 Jul; 25(7):e14322. PubMed ID: 38436611 [TBL] [Abstract][Full Text] [Related]
54. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Tunali I; Hall LO; Napel S; Cherezov D; Guvenis A; Gillies RJ; Schabath MB Med Phys; 2019 Nov; 46(11):5075-5085. PubMed ID: 31494946 [TBL] [Abstract][Full Text] [Related]
55. Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm. Amini M; Hajianfar G; Hadadi Avval A; Nazari M; Deevband MR; Oveisi M; Shiri I; Zaidi H Clin Oncol (R Coll Radiol); 2022 Feb; 34(2):114-127. PubMed ID: 34872823 [TBL] [Abstract][Full Text] [Related]
56. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
57. [18F] FDG Positron Emission Tomography (PET) Tumor and Penumbra Imaging Features Predict Recurrence in Non-Small Cell Lung Cancer. Mattonen SA; Davidzon GA; Bakr S; Echegaray S; Leung ANC; Vasanawala M; Horng G; Napel S; Nair VS Tomography; 2019 Mar; 5(1):145-153. PubMed ID: 30854452 [TBL] [Abstract][Full Text] [Related]
58. Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model. Gong J; Wang T; Wang Z; Chu X; Hu T; Li M; Peng W; Feng F; Tong T; Gu Y Cancer Imaging; 2024 Jan; 24(1):1. PubMed ID: 38167564 [TBL] [Abstract][Full Text] [Related]
59. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Zhu X; Dong D; Chen Z; Fang M; Zhang L; Song J; Yu D; Zang Y; Liu Z; Shi J; Tian J Eur Radiol; 2018 Jul; 28(7):2772-2778. PubMed ID: 29450713 [TBL] [Abstract][Full Text] [Related]
60. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Fave X; Zhang L; Yang J; Mackin D; Balter P; Gomez D; Followill D; Jones AK; Stingo F; Liao Z; Mohan R; Court L Sci Rep; 2017 Apr; 7(1):588. PubMed ID: 28373718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]