These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32096971)

  • 21. Superrepellent Porous Polymer Surfaces by Replication from Wrinkled Polydimethylsiloxane/Parylene F.
    Mayoussi F; Usama A; Karimi K; Nekoonam N; Goralczyk A; Zhu P; Helmer D; Rapp BE
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rough Structure of Electrodeposition as a Template for an Ultrarobust Self-Cleaning Surface.
    Qing Y; Hu C; Yang C; An K; Tang F; Tan J; Liu C
    ACS Appl Mater Interfaces; 2017 May; 9(19):16571-16580. PubMed ID: 28441007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review.
    Si W; Guo Z
    Adv Colloid Interface Sci; 2022 Dec; 310():102797. PubMed ID: 36283340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design.
    Zhi S; Wang G; Zeng Z; Zhu L; Liu Z; Zhang D; Xu K; Xue Q
    J Colloid Interface Sci; 2018 Sep; 526():106-113. PubMed ID: 29723791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.
    Xiong L; Kendrick LL; Heusser H; Webb JC; Sparks BJ; Goetz JT; Guo W; Stafford CM; Blanton MD; Nazarenko S; Patton DL
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10763-74. PubMed ID: 24911278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales.
    Papadopoulos P; Deng X; Mammen L; Drotlef DM; Battagliarin G; Li C; Müllen K; Landfester K; del Campo A; Butt HJ; Vollmer D
    Langmuir; 2012 Jun; 28(22):8392-8. PubMed ID: 22578130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO
    Chen L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27188-27198. PubMed ID: 27652905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Candle soot as a template for a transparent robust superamphiphobic coating.
    Deng X; Mammen L; Butt HJ; Vollmer D
    Science; 2012 Jan; 335(6064):67-70. PubMed ID: 22144464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid drops impacting superamphiphobic coatings.
    Deng X; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Langmuir; 2013 Jun; 29(25):7847-56. PubMed ID: 23697383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting of soft superhydrophobic micropillar arrays.
    Papadopoulos P; Pinchasik BE; Tress M; Vollmer D; Kappl M; Butt HJ
    Soft Matter; 2018 Sep; 14(36):7429-7434. PubMed ID: 30183043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super-robust superamphiphobic surface with anti-icing property.
    Wang H; Lu H; Zhang X
    RSC Adv; 2019 Aug; 9(47):27702-27709. PubMed ID: 35529205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.
    Tan H; Diddens C; Versluis M; Butt HJ; Lohse D; Zhang X
    Soft Matter; 2017 Apr; 13(15):2749-2759. PubMed ID: 28295107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and fabrication of superamphiphobic paper surfaces.
    Li L; Breedveld V; Hess DW
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5381-6. PubMed ID: 23647359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superamphiphobic polymeric surfaces sustaining ultrahigh impact pressures of aqueous high- and low-surface-tension mixtures, tested with laser-induced forward transfer of drops.
    Ellinas K; Chatzipetrou M; Zergioti I; Tserepi A; Gogolides E
    Adv Mater; 2015 Apr; 27(13):2231-5. PubMed ID: 25708570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.
    Xu H; Clarke A; Rothstein JP; Poole RJ
    J Colloid Interface Sci; 2018 Mar; 513():53-61. PubMed ID: 29132105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of Microdroplet Morphology Confined on Asymmetric Micropillar Structures.
    Ma B; Shan L; Dogruoz B; Agonafer D
    Langmuir; 2019 Sep; 35(37):12264-12275. PubMed ID: 31424229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-Cleaning Mechanism: Why Nanotexture and Hydrophobicity Matter.
    Heckenthaler T; Sadhujan S; Morgenstern Y; Natarajan P; Bashouti M; Kaufman Y
    Langmuir; 2019 Dec; 35(48):15526-15534. PubMed ID: 31469282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Stretchable Superamphiphobic Surfaces with Deformation-Induced Rearrangeable Structures.
    Zhou X; Liu J; Liu W; Steffen W; Butt HJ
    Adv Mater; 2022 Mar; 34(10):e2107901. PubMed ID: 34989448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.