These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32096974)
1. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage. Hou C; Wang J; Zhang W; Li J; Zhang R; Zhou J; Fan Y; Li D; Dang F; Liu J; Li Y; Liang K; Kong B ACS Appl Mater Interfaces; 2020 Mar; 12(12):13770-13780. PubMed ID: 32096974 [TBL] [Abstract][Full Text] [Related]
2. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Zheng F; Xia G; Yang Y; Chen Q Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439 [TBL] [Abstract][Full Text] [Related]
3. Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance. Zhou F; Li S; Han K; Li Y; Liu YN Dalton Trans; 2021 Jan; 50(2):535-545. PubMed ID: 33337455 [TBL] [Abstract][Full Text] [Related]
4. 3D Hierarchical Microballs Constructed by Intertwined MnO@N-doped Carbon Nanofibers towards Superior Lithium-Storage Properties. Li YJ; Fan CY; Li HH; Huang KC; Zhang JP; Wu XL Chemistry; 2018 Jul; 24(38):9606-9611. PubMed ID: 29633384 [TBL] [Abstract][Full Text] [Related]
5. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. Luo W; Hu X; Sun Y; Huang Y ACS Appl Mater Interfaces; 2013 Mar; 5(6):1997-2003. PubMed ID: 23432367 [TBL] [Abstract][Full Text] [Related]
6. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries. Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271 [TBL] [Abstract][Full Text] [Related]
7. Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries. Sun Q; Wang Z; Zhang Z; Yu Q; Qu Y; Zhang J; Yu Y; Xiang B ACS Appl Mater Interfaces; 2016 Mar; 8(10):6303-8. PubMed ID: 26894410 [TBL] [Abstract][Full Text] [Related]
8. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
9. A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Liu DH; Lü HY; Wu XL; Wang J; Yan X; Zhang JP; Geng H; Zhang Y; Yan Q Nanoscale Horiz; 2016 Nov; 1(6):496-501. PubMed ID: 32260714 [TBL] [Abstract][Full Text] [Related]
10. Chemical Vapor Deposition-Assisted Fabrication of Self-Assembled Co/MnO@C Composite Nanofibers as Advanced Anode Materials for High-Capacity Li-Ion Batteries. Zhang L; Wei K; Yin J; Zhou J; Zhang L; Li J; Jiao T Langmuir; 2020 Dec; 36(47):14342-14351. PubMed ID: 33205652 [TBL] [Abstract][Full Text] [Related]
11. High-capacity and long-life lithium storage boosted by pseudocapacitance in three-dimensional MnO-Cu-CNT/graphene anodes. Wang J; Deng Q; Li M; Jiang K; Hu Z; Chu J Nanoscale; 2018 Feb; 10(6):2944-2954. PubMed ID: 29372202 [TBL] [Abstract][Full Text] [Related]
12. MOF-Derived Hierarchical MnO-Doped Fe He Z; Wang K; Zhu S; Huang LA; Chen M; Guo J; Pei S; Shao H; Wang J ACS Appl Mater Interfaces; 2018 Apr; 10(13):10974-10985. PubMed ID: 29537815 [TBL] [Abstract][Full Text] [Related]
13. MnO@graphene nanopeapods derived via a one-pot hydrothermal process for a high performance anode in Li-ion batteries. Xiao Z; Ning G; Yu Z; Qi C; Zhao L; Li Y; Ma X; Li Y Nanoscale; 2019 Apr; 11(17):8270-8280. PubMed ID: 30976761 [TBL] [Abstract][Full Text] [Related]
14. Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries. Gan Q; He H; Zhao K; He Z; Liu S J Colloid Interface Sci; 2018 Nov; 530():127-136. PubMed ID: 29966845 [TBL] [Abstract][Full Text] [Related]
15. Formation of porous nitrogen-doped carbon-coating MnO nanospheres for advanced reversible lithium storage. Zhang L; Ge D; Qu G; Zheng J; Cao X; Gu H Nanoscale; 2017 May; 9(17):5451-5457. PubMed ID: 28401232 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Si-Induced MnO/Mn Wei H; Xia Z; Xia D ACS Appl Mater Interfaces; 2017 Dec; 9(50):43657-43664. PubMed ID: 29192756 [TBL] [Abstract][Full Text] [Related]
17. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Liu B; Hu X; Xu H; Luo W; Sun Y; Huang Y Sci Rep; 2014 Mar; 4():4229. PubMed ID: 24598639 [TBL] [Abstract][Full Text] [Related]
19. Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. Sun D; Tang Y; Ye D; Yan J; Zhou H; Wang H ACS Appl Mater Interfaces; 2017 Feb; 9(6):5254-5262. PubMed ID: 28102069 [TBL] [Abstract][Full Text] [Related]
20. Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries. Zhao X; Du Y; Jin L; Yang Y; Wu S; Li W; Yu Y; Zhu Y; Zhang Q Sci Rep; 2015 Sep; 5():14146. PubMed ID: 26374601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]