These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32097002)

  • 21. The nanomechanics of individual proteins.
    Mora M; Stannard A; Garcia-Manyes S
    Chem Soc Rev; 2020 Oct; 49(19):6816-6832. PubMed ID: 32929436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Fluorination on Single-Molecule Unfolding and Rupture Pathways of a Mechanostable Protein Adhesion Complex.
    Yang B; Liu H; Liu Z; Doenen R; Nash MA
    Nano Lett; 2020 Dec; 20(12):8940-8950. PubMed ID: 33191756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trigger factor chaperone acts as a mechanical foldase.
    Haldar S; Tapia-Rojo R; Eckels EC; Valle-Orero J; Fernandez JM
    Nat Commun; 2017 Sep; 8(1):668. PubMed ID: 28939815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule protein unfolding and refolding using atomic force microscopy.
    Bornschlögl T; Rief M
    Methods Mol Biol; 2011; 783():233-50. PubMed ID: 21909892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible mechanical unfolding of single ubiquitin molecules.
    Chyan CL; Lin FC; Peng H; Yuan JM; Chang CH; Lin SH; Yang G
    Biophys J; 2004 Dec; 87(6):3995-4006. PubMed ID: 15361414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechano-adaptive sensory mechanism of α-catenin under tension.
    Maki K; Han SW; Hirano Y; Yonemura S; Hakoshima T; Adachi T
    Sci Rep; 2016 Apr; 6():24878. PubMed ID: 27109499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. History, rare, and multiple events of mechanical unfolding of repeat proteins.
    Sumbul F; Marchesi A; Rico F
    J Chem Phys; 2018 Mar; 148(12):123335. PubMed ID: 29604819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete unfolding of the titin molecule under external force.
    Kellermayer MS; Smith SB; Bustamante C; Granzier HL
    J Struct Biol; 1998; 122(1-2):197-205. PubMed ID: 9724621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrahigh Adhesion Force Between Silica-Binding Peptide SB7 and Glass Substrate Studied by Single-Molecule Force Spectroscopy and Molecular Dynamic Simulation.
    Zhang X; Chen J; Li E; Hu C; Luo SZ; He C
    Front Chem; 2020; 8():600918. PubMed ID: 33330393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein unfolding and refolding under force: methodologies for nanomechanics.
    Samorì B; Zuccheri G; Baschieri R
    Chemphyschem; 2005 Jan; 6(1):29-34. PubMed ID: 15688640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein.
    Zhang J; Matthews CR
    Biochemistry; 1998 Oct; 37(42):14891-9. PubMed ID: 9778365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Work of Titin Protein Folding as a Major Driver in Muscle Contraction.
    Eckels EC; Tapia-Rojo R; Rivas-Pardo JA; Fernández JM
    Annu Rev Physiol; 2018 Feb; 80():327-351. PubMed ID: 29433413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring the differential stoichiometry and energetics of ligand binding to macromolecules by single-molecule force spectroscopy: an extended theory.
    Jacobson DR; Saleh OA
    J Phys Chem B; 2015 Feb; 119(5):1930-8. PubMed ID: 25621932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Work Done by Titin Protein Folding Assists Muscle Contraction.
    Rivas-Pardo JA; Eckels EC; Popa I; Kosuri P; Linke WA; Fernández JM
    Cell Rep; 2016 Feb; 14(6):1339-1347. PubMed ID: 26854230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers.
    Cecconi C; Shank EA; Dahlquist FW; Marqusee S; Bustamante C
    Eur Biophys J; 2008 Jul; 37(6):729-38. PubMed ID: 18183383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Active, Ligand-Responsive Pulling Geometry Reports on Internal Signaling between Subdomains of the DnaK Nucleotide-Binding Domain in Single-Molecule Mechanical Experiments.
    Meinhold S; Bauer D; Huber J; Merkel U; Weißl A; Žoldák G; Rief M
    Biochemistry; 2019 Nov; 58(47):4744-4750. PubMed ID: 31120736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ligand binding on a protein with a complex folding landscape.
    Mazal H; Aviram H; Riven I; Haran G
    Phys Chem Chem Phys; 2018 Jan; 20(5):3054-3062. PubMed ID: 28721412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization.
    Rivas-Pardo JA; Alegre-Cebollada J; Ramírez-Sarmiento CA; Fernandez JM; Guixé V
    ACS Nano; 2015; 9(4):3996-4005. PubMed ID: 25840594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.