BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32097014)

  • 1. Monitoring Plant Health with Near-Infrared Fluorescent H
    Wu H; Nißler R; Morris V; Herrmann N; Hu P; Jeon SJ; Kruss S; Giraldo JP
    Nano Lett; 2020 Apr; 20(4):2432-2442. PubMed ID: 32097014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring.
    Giraldo JP; Landry MP; Kwak SY; Jain RM; Wong MH; Iverson NM; Ben-Naim M; Strano MS
    Small; 2015 Aug; 11(32):3973-84. PubMed ID: 25981520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo monitoring of oxidative burst on aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode.
    Ren QQ; Yuan XJ; Huang XR; Wen W; Zhao YD; Chen W
    Biosens Bioelectron; 2013 Dec; 50():318-24. PubMed ID: 23876543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Salt Stress to
    Zhang J; Lu M; Zhou H; Du X; Du X
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors.
    Dinarvand M; Neubert E; Meyer D; Selvaggio G; Mann FA; Erpenbeck L; Kruss S
    Nano Lett; 2019 Sep; 19(9):6604-6611. PubMed ID: 31418577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes.
    Sekiyama S; Umezawa M; Iizumi Y; Ube T; Okazaki T; Kamimura M; Soga K
    Langmuir; 2019 Jan; 35(3):831-837. PubMed ID: 30585494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes.
    Jin H; Heller DA; Kalbacova M; Kim JH; Zhang J; Boghossian AA; Maheshri N; Strano MS
    Nat Nanotechnol; 2010 Apr; 5(4):302-9. PubMed ID: 20208549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts.
    Santana I; Jeon SJ; Kim HI; Islam MR; Castillo C; Garcia GFH; Newkirk GM; Giraldo JP
    ACS Nano; 2022 Aug; 16(8):12156-12173. PubMed ID: 35943045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants.
    Exposito-Rodriguez M; Laissue PP; Littlejohn GR; Smirnoff N; Mullineaux PM
    Methods Enzymol; 2013; 527():185-201. PubMed ID: 23830632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Phenotypic Sensor for Visibly Tracking H
    Yin Y; Wang G; Liu Y; Wang XF; Gao W; Zhang S; You C
    J Agric Food Chem; 2022 Aug; 70(32):10058-10064. PubMed ID: 35939798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time detection of wound-induced H
    Lew TTS; Koman VB; Silmore KS; Seo JS; Gordiichuk P; Kwak SY; Park M; Ang MC; Khong DT; Lee MA; Chan-Park MB; Chua NH; Strano MS
    Nat Plants; 2020 Apr; 6(4):404-415. PubMed ID: 32296141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube biocompatibility in plants is determined by their surface chemistry.
    González-Grandío E; Demirer GS; Jackson CT; Yang D; Ebert S; Molawi K; Keller H; Landry MP
    J Nanobiotechnology; 2021 Dec; 19(1):431. PubMed ID: 34930290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Single-Walled Carbon Nanotubes for Protein Detection.
    Hendler-Neumark A; Bisker G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes.
    Sistemich L; Galonska P; Stegemann J; Ackermann J; Kruss S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300682. PubMed ID: 36891826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel near-infrared fluorescent probe for H2O2 in alkaline environment and the application for H2O2 imaging in vitro and in vivo.
    Liu K; Shang H; Kong X; Ren M; Wang JY; Liu Y; Lin W
    Biomaterials; 2016 Sep; 100():162-71. PubMed ID: 27258486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells.
    Li H; Yao Q; Fan J; Du J; Wang J; Peng X
    Biosens Bioelectron; 2017 Aug; 94():536-543. PubMed ID: 28347967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicolor imaging of hydrogen peroxide level in living and apoptotic cells by a single fluorescent probe.
    Wen Y; Xue F; Lan H; Li Z; Xiao S; Yi T
    Biosens Bioelectron; 2017 May; 91():115-121. PubMed ID: 27997865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species.
    Wu H; Tito N; Giraldo JP
    ACS Nano; 2017 Nov; 11(11):11283-11297. PubMed ID: 29099581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.