BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32097410)

  • 21. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.
    Veeraraghavan R; Lin J; Keener JP; Gourdie R; Poelzing S
    Pflugers Arch; 2016 Oct; 468(10):1651-61. PubMed ID: 27510622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy.
    Eloff BC; Gilat E; Wan X; Rosenbaum DS
    Circulation; 2003 Dec; 108(25):3157-63. PubMed ID: 14656916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Cardiac Gap Junction has Discrete Functions in Electrotonic and Ephaptic Coupling.
    Gourdie RG
    Anat Rec (Hoboken); 2019 Jan; 302(1):93-100. PubMed ID: 30565418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gating of mammalian cardiac gap junction channels by transjunctional voltage.
    Wang HZ; Li J; Lemanski LF; Veenstra RD
    Biophys J; 1992 Jul; 63(1):139-51. PubMed ID: 1420863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating.
    Snipas M; Rimkute L; Kraujalis T; Maciunas K; Bukauskas FF
    PLoS Comput Biol; 2017 Apr; 13(4):e1005464. PubMed ID: 28384220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue.
    Costa CM; Silva PA; dos Santos RW
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):765-74. PubMed ID: 26292333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model of electrical conduction in cardiac tissue including fibroblasts.
    Sachse FB; Moreno AP; Seemann G; Abildskov JA
    Ann Biomed Eng; 2009 May; 37(5):874-89. PubMed ID: 19283480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of gap junctional conductance.
    Spray DC; White RL; Mazet F; Bennett MV
    Am J Physiol; 1985 Jun; 248(6 Pt 2):H753-64. PubMed ID: 2408489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic behavior of gap junctions in each cardiac cycle: a novel view on the electrical coupling of normal cardiocytes.
    Mahdavi S; Rezaei-Tavirani M; Gharibzadeh S; Towhidkhah F
    Med Hypotheses; 2006; 67(2):300-3. PubMed ID: 16563647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ephaptic conduction in a cardiac strand model with 3D electrodiffusion.
    Mori Y; Fishman GI; Peskin CS
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6463-8. PubMed ID: 18434544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ephaptic coupling in cardiac myocytes.
    Lin J; Keener JP
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):576-82. PubMed ID: 23335235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intercellular coupling in frog heart muscle. Electrophysiological and morphological aspects.
    Haas HG; Meyer R; Einwächter HM; Stockem W
    Pflugers Arch; 1983 Dec; 399(4):321-35. PubMed ID: 6607456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell size and communication: role in structural and electrical development and remodeling of the heart.
    Spach MS; Heidlage JF; Barr RC; Dolber PC
    Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deriving macroscopic myocardial conductivities by homogenization of microscopic models.
    Hand PE; Griffith BE; Peskin CS
    Bull Math Biol; 2009 Oct; 71(7):1707-26. PubMed ID: 19412638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature dependence of embryonic cardiac gap junction conductance and channel kinetics.
    Chen YH; DeHaan RL
    J Membr Biol; 1993 Nov; 136(2):125-34. PubMed ID: 7508979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micropatterns of propagation.
    Lee PJ; Pogwizd SM
    Adv Cardiol; 2006; 42():86-106. PubMed ID: 16646586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defining electrical communication in skeletal muscle resistance arteries: a computational approach.
    Diep HK; Vigmond EJ; Segal SS; Welsh DG
    J Physiol; 2005 Oct; 568(Pt 1):267-81. PubMed ID: 16002449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac muscle cell interaction: from microanatomy to the molecular make-up of the gap junction.
    Severs NJ
    Histol Histopathol; 1995 Apr; 10(2):481-501. PubMed ID: 7599443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction.
    Tsumoto K; Ashihara T; Haraguchi R; Nakazawa K; Kurachi Y
    Biophys J; 2011 Feb; 100(3):554-563. PubMed ID: 21281569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lessons learned about slow discontinuous conduction from models of impulse propagation.
    Rudy Y
    J Electrocardiol; 2005 Oct; 38(4 Suppl):52-4. PubMed ID: 16226074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.