These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32097516)
1. The quorum-sensing molecule 2-phenylethanol impaired conidial germination, hyphal membrane integrity and growth of Penicillium expansum and Penicillium nordicum. Huang C; Qian Y; Viana T; Siegumfeldt H; Arneborg N; Larsen N; Jespersen L J Appl Microbiol; 2020 Aug; 129(2):278-286. PubMed ID: 32097516 [TBL] [Abstract][Full Text] [Related]
2. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Maneerat C; Hayata Y Int J Food Microbiol; 2006 Mar; 107(2):99-103. PubMed ID: 16269195 [TBL] [Abstract][Full Text] [Related]
3. Antifungal effect of gamma irradiation and sodium dichloroisocyanurate against Penicillium expansum on pears. Jeong RD; Chu EH; Shin EJ; Lee ES; Kwak YS; Park HJ Lett Appl Microbiol; 2015 Nov; 61(5):437-45. PubMed ID: 26174206 [TBL] [Abstract][Full Text] [Related]
4. Modelling the effect of essential oil of betel leaf (Piper betle L.) on germination, growth, and apparent lag time of Penicillium expansum on semi-synthetic media. Basak S; Guha P Int J Food Microbiol; 2015 Dec; 215():171-8. PubMed ID: 26439423 [TBL] [Abstract][Full Text] [Related]
5. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. He L; Liu Y; Mustapha A; Lin M Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731 [TBL] [Abstract][Full Text] [Related]
6. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites. Qiao N; Yu L; Zhang C; Wei C; Zhao J; Zhang H; Tian F; Zhai Q; Chen W FEMS Microbiol Lett; 2020 Sep; 367(18):. PubMed ID: 32845333 [TBL] [Abstract][Full Text] [Related]
7. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species. Nguyen Van Long N; Vasseur V; Coroller L; Dantigny P; Le Panse S; Weill A; Mounier J; Rigalma K Int J Food Microbiol; 2017 Jan; 241():151-160. PubMed ID: 27780083 [TBL] [Abstract][Full Text] [Related]
8. Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum. Lai T; Li B; Qin G; Tian S Curr Microbiol; 2011 Jan; 62(1):229-34. PubMed ID: 20593183 [TBL] [Abstract][Full Text] [Related]
9. Antifungal Activity of an Abundant Thaumatin-Like Protein from Banana against Jiao W; Li X; Zhao H; Cao J; Jiang W Molecules; 2018 Jun; 23(6):. PubMed ID: 29899211 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action. Wu ZL; Yin XB; Lin ZQ; Bañuelos GS; Yuan LX; Liu Y; Li M Curr Microbiol; 2014 Aug; 69(2):192-201. PubMed ID: 24682262 [TBL] [Abstract][Full Text] [Related]
11. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. da Rocha Neto AC; Maraschin M; Di Piero RM Int J Food Microbiol; 2015 Dec; 215():64-70. PubMed ID: 26340673 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins. Jeong RD; Chu EH; Lee GW; Cho C; Park HJ Int J Food Microbiol; 2016 Oct; 234():1-8. PubMed ID: 27356109 [TBL] [Abstract][Full Text] [Related]
13. Real-time monitoring of fungal inhibition and morphological changes. Aunsbjerg SD; Andersen KR; Knøchel S J Microbiol Methods; 2015 Dec; 119():196-202. PubMed ID: 26541062 [TBL] [Abstract][Full Text] [Related]
14. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Guimarães A; Venancio A; Abrunhosa L Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Sep; 35(9):1803-1818. PubMed ID: 30016195 [TBL] [Abstract][Full Text] [Related]
15. Germination and adhesion of fungal conidia on polycarbonate membranes and on apple fruit exposed to mycoactive acetate esters. Filonow AB Can J Microbiol; 2003 Feb; 49(2):130-8. PubMed ID: 12718401 [TBL] [Abstract][Full Text] [Related]
16. Effect of chlorine dioxide (ClO Zhang X; Fu M; Chen Q J Sci Food Agric; 2019 Mar; 99(4):1961-1968. PubMed ID: 30270445 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Penicillium expansum by an oxidative treatment. Cerioni L; Lazarte Mde L; Villegas JM; Rodríguez-Montelongo L; Volentini SI Food Microbiol; 2013 Apr; 33(2):298-301. PubMed ID: 23200664 [TBL] [Abstract][Full Text] [Related]
18. Modelling the inhibitory effect of copper sulfate on the growth of Penicillium expansum and Botrytis cinerea. Judet-Correia D; Charpentier C; Bensoussan M; Dantigny P Lett Appl Microbiol; 2011 Nov; 53(5):558-64. PubMed ID: 21899581 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the activity of the antifungal PgAFP protein and its producer mould against Penicillium spp postharvest pathogens of citrus and pome fruits. Delgado J; Ballester AR; Núñez F; González-Candelas L Food Microbiol; 2019 Dec; 84():103266. PubMed ID: 31421779 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments. Nierop Groot M; Abee T; van Bokhorst-van de Veen H Food Microbiol; 2019 Aug; 81():108-114. PubMed ID: 30910081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]