These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32097548)

  • 1. Efficient Irreversible Monte Carlo Samplers.
    Faizi F; Deligiannidis G; Rosta E
    J Chem Theory Comput; 2020 Apr; 16(4):2124-2138. PubMed ID: 32097548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated tempering with irreversible Gibbs sampling techniques.
    Faizi F; Buigues PJ; Deligiannidis G; Rosta E
    J Chem Phys; 2020 Dec; 153(21):214111. PubMed ID: 33291930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions.
    Sakai Y; Hukushima K
    Phys Rev E; 2016 Apr; 93():043318. PubMed ID: 27176439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Markov chain Monte Carlo method without detailed balance.
    Suwa H; Todo S
    Phys Rev Lett; 2010 Sep; 105(12):120603. PubMed ID: 20867621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.
    Nishikawa Y; Michel M; Krauth W; Hukushima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063306. PubMed ID: 26764852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Metropolis dynamics with a generalized master equation: an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems.
    da Silva R; Drugowich de Felício JR; Martinez AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066707. PubMed ID: 23005243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifted directed-worm algorithm.
    Suwa H
    Phys Rev E; 2022 Nov; 106(5-2):055306. PubMed ID: 36559387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of autocorrelation times in neural Markov chain Monte Carlo simulations.
    Białas P; Korcyl P; Stebel T
    Phys Rev E; 2023 Jan; 107(1-2):015303. PubMed ID: 36797952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric allocation approach to accelerating directed worm algorithm.
    Suwa H
    Phys Rev E; 2021 Jan; 103(1-1):013308. PubMed ID: 33601561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Gibbs Sampler for Learning DAGs.
    Goudie RJ; Mukherjee S
    J Mach Learn Res; 2016 Apr; 17(30):1-39. PubMed ID: 28331463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating CDMs Using the Slice-Within-Gibbs Sampler.
    Xu X; de la Torre J; Zhang J; Guo J; Shi N
    Front Psychol; 2020; 11():2260. PubMed ID: 33101108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast and efficient Gibbs sampler for BayesB in whole-genome analyses.
    Cheng H; Qu L; Garrick DJ; Fernando RL
    Genet Sel Evol; 2015 Oct; 47():80. PubMed ID: 26467850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metropolis sampling in pedigree analysis.
    Sobel E; Lange K
    Stat Methods Med Res; 1993; 2(3):263-82. PubMed ID: 8261261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Monte Carlo updating.
    Pollet L; Rombouts SM; Van Houcke K; Heyde K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056705. PubMed ID: 15600794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm.
    Pereyra M; Dobigeon N; Batatia H; Tourneret JY
    IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceptance rate is a thermodynamic function in local Monte Carlo algorithms.
    Burovski E; Janke W; Guskova M; Shchur L
    Phys Rev E; 2019 Dec; 100(6-1):063303. PubMed ID: 31962540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.
    Tasaki S; Sauerwine B; Hoff B; Toyoshiba H; Gaiteri C; Chaibub Neto E
    Genetics; 2015 Apr; 199(4):973-89. PubMed ID: 25631319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.