These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32097673)

  • 1. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models.
    Hour FQ; Moghadam AJ; Shakeri-Zadeh A; Bakhtiyari M; Shabani R; Mehdizadeh M
    J Control Release; 2020 May; 321():430-441. PubMed ID: 32097673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Oxide Nanoparticle-Incorporated Mesenchymal Stem Cells for Alzheimer's Disease Treatment.
    Jung M; Kim H; Hwang JW; Choi Y; Kang M; Kim C; Hong J; Lee NK; Moon S; Chang JW; Choi SJ; Oh SY; Jang H; Na DL; Kim BS
    Nano Lett; 2023 Jan; 23(2):476-490. PubMed ID: 36638236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External magnetic field promotes homing of magnetized stem cells following subcutaneous injection.
    Meng Y; Shi C; Hu B; Gong J; Zhong X; Lin X; Zhang X; Liu J; Liu C; Xu H
    BMC Cell Biol; 2017 May; 18(1):24. PubMed ID: 28549413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of Fe
    Li X; Wei Z; Wu L; Lv H; Zhang Y; Li J; Yao H; Zhang H; Yang B; Xu X; Jiang J
    Biomater Sci; 2020 Oct; 8(19):5362-5375. PubMed ID: 32869785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wharton's Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model.
    Xie ZH; Liu Z; Zhang XR; Yang H; Wei LF; Wang Y; Xu SL; Sun L; Lai C; Bi JZ; Wang XY
    Clin Exp Med; 2016 Feb; 16(1):89-98. PubMed ID: 26188488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton's Jelly and olfactory mucosa as sources of MSCs.
    Alizadeh R; Bagher Z; Kamrava SK; Falah M; Ghasemi Hamidabadi H; Eskandarian Boroujeni M; Mohammadi F; Khodaverdi S; Zare-Sadeghi A; Olya A; Komeili A
    J Chem Neuroanat; 2019 Mar; 96():126-133. PubMed ID: 30639339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between the effect of human Wharton's jelly-derived mesenchymal stem cells and levetiracetam on brain infarcts in rats.
    Abd El Motteleb DM; Hussein S; Hasan MM; Mosaad H
    J Cell Biochem; 2018 Dec; 119(12):9790-9800. PubMed ID: 30171723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wharton's jelly-derived mesenchymal stem cells attenuate sepsis-induced organ injury partially via cholinergic anti-inflammatory pathway activation.
    Capcha JMC; Rodrigues CE; Moreira RS; Silveira MD; Dourado P; Dos Santos F; Irigoyen MC; Jensen L; Garnica MR; Noronha IL; Andrade L; Gomes SA
    Am J Physiol Regul Integr Comp Physiol; 2020 Jan; 318(1):R135-R147. PubMed ID: 31596111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.
    Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M
    Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrathecal Injection in A Rat Model: A Potential Route to Deliver Human Wharton's Jelly-Derived Mesenchymal Stem Cells into the Brain.
    Kim H; Na DL; Lee NK; Kim AR; Lee S; Jang H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32070050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton's jelly, into choline acetyltransferase (ChAT)-positive cells.
    Zhang L; Tan X; Dong C; Zou L; Zhao H; Zhang X; Tian M; Jin G
    Int J Dev Neurosci; 2012 Oct; 30(6):471-7. PubMed ID: 22683696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury.
    Chudickova M; Vackova I; Machova Urdzikova L; Jancova P; Kekulova K; Rehorova M; Turnovcova K; Jendelova P; Kubinova S
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single high-dose intravenous injection of Wharton's jelly-derived mesenchymal stem cell exerts protective effects in a rat model of metabolic syndrome.
    Chan AML; Ng AMH; Yunus MHM; Idrus RH; Law JX; Yazid MD; Chin KY; Yusof MRM; Ng SN; Koh B; Lokanathan Y
    Stem Cell Res Ther; 2024 Jun; 15(1):160. PubMed ID: 38835014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche.
    Obradovic H; Krstic J; Trivanovic D; Mojsilovic S; Okic I; Kukolj T; Ilic V; Jaukovic A; Terzic M; Bugarski D
    Placenta; 2019 Jul; 82():25-34. PubMed ID: 31174623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cell-Derived Matrices on Growth and Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells.
    Selvaraj S; Rupert S; Nandabalan SK; Anbalagan C; Rajaram PS; Satyanesan J; Vennila R; Rajagopal S
    Cells Tissues Organs; 2024; 213(1):67-78. PubMed ID: 35908543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Wharton's jelly mesenchymal stem cells: properties, isolation and clinical applications.
    Borys-Wójcik S; Brązert M; Jankowski M; Ożegowska K; Chermuła B; Piotrowska-Kempisty H; Bukowska D; Antosik P; Pawelczyk L; Nowicki M; Jeseta M; Kempisty B
    J Biol Regul Homeost Agents; 2019 Jan-Feb,; 33(1):119-123. PubMed ID: 30729769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells Labeled with Mn
    Chetty SS; Praneetha S; Vadivel Murugan A; Govarthanan K; Verma RS
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3415-3429. PubMed ID: 31875453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro.
    Corsello T; Amico G; Corrao S; Anzalone R; Timoneri F; Lo Iacono M; Russo E; Spatola GF; Uzzo ML; Giuffrè M; Caprnda M; Kubatka P; Kruzliak P; Conaldi PG; La Rocca G
    Stem Cell Rev Rep; 2019 Dec; 15(6):900-918. PubMed ID: 31741193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.