These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 3209774)

  • 1. The radiation impedance of the external ear of cat: measurements and applications.
    Rosowski JJ; Carney LH; Peake WT
    J Acoust Soc Am; 1988 Nov; 84(5):1695-708. PubMed ID: 3209774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial distribution of sound pressure and energy flow in the ear canals of cats.
    Stinson MR; Khanna SM
    J Acoust Soc Am; 1994 Jul; 96(1):170-80. PubMed ID: 8064020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance matching, optimum velocity, and ideal middle ears.
    Peake WT; Rosowski JJ
    Hear Res; 1991 May; 53(1):1-6. PubMed ID: 2066277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pinna-based spectral cues for sound localization in cat.
    Rice JJ; May BJ; Spirou GA; Young ED
    Hear Res; 1992 Mar; 58(2):132-52. PubMed ID: 1568936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and estimating acoustic transfer functions of external ears with or without headphones.
    Deng H; Yang J
    J Acoust Soc Am; 2015 Aug; 138(2):694-707. PubMed ID: 26328687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic impedances at the oval window, and sound pressure transformation of the middle ear in Norwegian cattle.
    Kringlebotn M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1094-104. PubMed ID: 11008812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tests of some common assumptions of ear-canal acoustics in cats.
    Huang GT; Rosowski JJ; Puria S; Peake WT
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1147-61. PubMed ID: 11008816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
    Bergevin C; Olson ES
    J Acoust Soc Am; 2014 Mar; 135(3):1294-312. PubMed ID: 24606269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directionality of sound pressure transformation at the pinna of echolocating bats.
    Jen PH; Chen DM
    Hear Res; 1988 Jul; 34(2):101-17. PubMed ID: 3170353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directionality of sound pressure transformation at the cat's pinna.
    Phillips DP; Calford MB; Pettigrew JD; Aitkin LM; Semple MN
    Hear Res; 1982 Sep; 8(1):13-28. PubMed ID: 7142030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.