BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32097778)

  • 1. Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification.
    Ondon BS; Li S; Zhou Q; Li F
    Bioresour Technol; 2020 May; 304():122984. PubMed ID: 32097778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous electricity production and antibiotics removal by microbial fuel cells.
    Zhou Y; Zhu N; Guo W; Wang Y; Huang X; Wu P; Dang Z; Zhang X; Xian J
    J Environ Manage; 2018 Jul; 217():565-572. PubMed ID: 29635189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of sulfadiazine and electricity generation from wastewater using Bacillus subtilis EL06 integrated with an open circuit system.
    Al-Ansari MM; Benabdelkamel H; Al-Humaid L
    Chemosphere; 2021 Aug; 276():130145. PubMed ID: 33740649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate and mitigation of antibiotics and antibiotic resistance genes in microbial fuel cell and coupled systems.
    Liu Y; Zhang J; Cheng D; Guo W; Liu X; Chen Z; Zhang Z; Ngo HH
    Sci Total Environ; 2024 Aug; 938():173530. PubMed ID: 38815818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binder-free NiO/MnO
    Huang SJ; Dwivedi KA; Kumar S; Wang CT; Yadav AK
    Environ Pollut; 2023 Jan; 317():120578. PubMed ID: 36395905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment.
    Rahmani AR; Navidjouy N; Rahimnejad M; Alizadeh S; Samarghandi MR; Nematollahi D
    Environ Technol; 2022 Jan; 43(1):1-9. PubMed ID: 32431240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes.
    Li S; Zhu X; Yu H; Wang X; Liu X; Yang H; Li F; Zhou Q
    Environ Res; 2021 Jun; 197():111054. PubMed ID: 33775682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotic removal and antibiotic resistance genes fate by regulating bioelectrochemical characteristics in microbial fuel cells.
    Yang XL; Wang Q; Li T; Xu H; Song HL
    Bioresour Technol; 2022 Mar; 348():126752. PubMed ID: 35077813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics.
    Cheng D; Ngo HH; Guo W; Lee D; Nghiem DL; Zhang J; Liang S; Varjani S; Wang J
    Bioresour Technol; 2020 Sep; 311():123588. PubMed ID: 32475794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of external resistance on the performance of microbial fuel cell and the removal of sulfamethoxazole wastewater.
    Jiang J; Wang H; Zhang S; Li S; Zeng W; Li F
    Bioresour Technol; 2021 Sep; 336():125308. PubMed ID: 34044244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.
    Lee YY; Kim TG; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1131-8. PubMed ID: 27428492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrow pH tolerance found for a microbial fuel cell treating winery wastewater.
    Liu T; Nadaraja AV; Friesen J; Gill K; Lam MI; Roberts DJ
    J Appl Microbiol; 2021 Nov; 131(5):2280-2293. PubMed ID: 33843137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions.
    Fang Z; Song HL; Cang N; Li XN
    Biosens Bioelectron; 2015 Jun; 68():135-141. PubMed ID: 25562740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From single-chamber to multi-anodic microbial fuel cells: A review.
    Bhaduri S; Behera M
    J Environ Manage; 2024 Mar; 355():120465. PubMed ID: 38447510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system.
    Li H; Wang K; Xu J; Wu H; Ma Y; Zou R; Song HL
    Chemosphere; 2023 Oct; 338():139461. PubMed ID: 37437616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review.
    Wang W; Zhang Y; Li M; Wei X; Wang Y; Liu L; Wang H; Shen S
    Bioresour Technol; 2020 Oct; 314():123808. PubMed ID: 32713782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].
    Cai XB; Yang Y; Sun YP; Zhang L; Xiao Y; Zhao H
    Huan Jing Ke Xue; 2010 Oct; 31(10):2512-7. PubMed ID: 21229770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater.
    Zhang K; Wang T; Chen J; Guo J; Luo H; Chen W; Mo Y; Wei Z; Huang X
    J Contam Hydrol; 2022 May; 247():103981. PubMed ID: 35247696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production.
    Munoz-Cupa C; Hu Y; Xu C; Bassi A
    Sci Total Environ; 2021 Feb; 754():142429. PubMed ID: 33254845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell.
    Xue W; Li F; Zhou Q
    Bioresour Technol; 2019 Oct; 289():121632. PubMed ID: 31228744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.