BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3209794)

  • 1. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol.
    Eisenhofer G; Goldstein DS; Ropchak TG; Nguyen HQ; Keiser HR; Kopin IJ
    J Auton Nerv Syst; 1988 Sep; 24(1-2):1-14. PubMed ID: 3209794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuronal and extraneuronal origins of plasma 3-methoxy-4-hydroxyphenylglycol in rats.
    Eisenhofer G; Pecorella W; Pacak K; Hooper D; Kopin IJ; Goldstein DS
    J Auton Nerv Syst; 1994 Dec; 50(1):93-107. PubMed ID: 7844319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dihydroxyphenylglycol and intraneuronal metabolism of endogenous and exogenous norepinephrine in the rat vas deferens.
    Eisenhofer G; Ropchak TG; Stull RW; Goldstein DS; Keiser HR; Kopin IJ
    J Pharmacol Exp Ther; 1987 May; 241(2):547-53. PubMed ID: 3572811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma dihydroxyphenylglycol for estimation of noradrenaline neuronal re-uptake in the sympathetic nervous system in vivo.
    Eisenhofer G; Goldstein DS; Kopin IJ
    Clin Sci (Lond); 1989 Feb; 76(2):171-82. PubMed ID: 2924508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further characterization of brain 3,4-dihydroxyphenylethyleneglycol (DHPG) formation: dependence on noradrenergic activity and site of formation.
    Li PP; Warsh JJ; Godse DD
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):26-33. PubMed ID: 3951564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noradrenaline reuptake and plasma dihydroxyphenylglycol during sustained changes in sympathetic activity in rabbits.
    Eisenhofer G; Cox HS; Esler MD
    J Auton Nerv Syst; 1991 Mar; 32(3):217-31. PubMed ID: 2037769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative importance of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol as norepinephrine metabolites in rat, monkey, and humans.
    Elsworth JD; Roth RH; Redmond DE
    J Neurochem; 1983 Sep; 41(3):786-93. PubMed ID: 6875564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal reuptake of norepinephrine and production of dihydroxyphenylglycol by cardiac sympathetic nerves in the anesthetized dog.
    Eisenhofer G; Smolich JJ; Cox HS; Esler MD
    Circulation; 1991 Sep; 84(3):1354-63. PubMed ID: 1884458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between hypothalamic noradrenergic neuronal activity and serum 3-methoxy-4-hydroxyphenylethylene glycol in the rat.
    Grunstein HS; Gleeson RM; Smythe GA
    Life Sci; 1986 Jul; 39(3):207-13. PubMed ID: 3736321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans.
    Goldstein DS; Eisenhofer G; Stull R; Folio CJ; Keiser HR; Kopin IJ
    J Clin Invest; 1988 Jan; 81(1):213-20. PubMed ID: 3335637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG) levels in human urine, plasma and cerebrospinal fluids, and their significance in studies of depression.
    Tsuji M; Yamane H; Yamada N; Iida H; Taga C; Myojin T
    Jpn J Psychiatry Neurol; 1986 Mar; 40(1):47-56. PubMed ID: 3773351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are insensitive indicators of alpha 2-adrenoceptor mediated regulation of norepinephrine release in healthy human volunteers.
    Scheinin M; Karhuvaara S; Ojala-Karlsson P; Kallio A; Koulu M
    Life Sci; 1991; 49(1):75-84. PubMed ID: 1646924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of 3,4-dihydroxyphenylglycol (DHPG) by HPLC with coulometric detection, and correlation with 3-methoxy-4-hydroxyphenylglycol (MHPG) in human plasma.
    Karege F; Gaillard JM; Tissot R; Azorin JM; Valli M
    Biomed Chromatogr; 1987 Feb; 2(1):30-3. PubMed ID: 3508091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal uptake, metabolism, and release of tritium-labeled norepinephrine during assessment of its plasma kinetics.
    Eisenhofer G; Esler MD; Goldstein DS; Kopin IJ
    Am J Physiol; 1991 Oct; 261(4 Pt 1):E505-15. PubMed ID: 1928342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympathetic nervous function in human heart as assessed by cardiac spillovers of dihydroxyphenylglycol and norepinephrine.
    Eisenhofer G; Esler MD; Meredith IT; Dart A; Cannon RO; Quyyumi AA; Lambert G; Chin J; Jennings GL; Goldstein DS
    Circulation; 1992 May; 85(5):1775-85. PubMed ID: 1572033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and clearance of norepinephrine glycol metabolites in mouse brain.
    Li PP; Warsh JJ; Godse DD
    J Neurochem; 1984 Nov; 43(5):1425-33. PubMed ID: 6491661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Norepinephrine metabolism in neuron: dissociation between 3,4-dihydroxyphenylglycol and 3,4-dihydroxymandelic acid pathways.
    Dong WX; Ni XL
    Acta Pharmacol Sin; 2002 Jan; 23(1):59-65. PubMed ID: 11860739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo monitoring of norepinephrine and its metabolites in skeletal muscle.
    Tokunaga N; Yamazaki T; Akiyama T; Sano S; Mori H
    Neurochem Int; 2003 Nov; 43(6):573-80. PubMed ID: 12820986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source and physiological significance of plasma 3,4-dihydroxyphenylalanine in the rat.
    Eisenhofer G; Goldstein DS; Ropchak TG; Kopin IJ
    J Neurochem; 1988 Oct; 51(4):1204-13. PubMed ID: 2901461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monoamine oxidase inhibitors on levels of catechols and homovanillic acid in striatum and plasma.
    Hovevey-Sion D; Kopin IJ; Stull RW; Goldstein DS
    Neuropharmacology; 1989 Aug; 28(8):791-7. PubMed ID: 2506486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.