BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32098082)

  • 1. Walking Recognition in Mobile Devices.
    Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Step Counting for Inertial Navigation with Mobile Phones.
    Rodríguez G; Casado FE; Iglesias R; Regueiro CV; Nieto A
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand.
    Ebner M; Fetzer T; Bullmann M; Deinzer F; Grzegorzek M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors.
    Moreira D; Barandas M; Rocha T; Alves P; Santos R; Leonardo R; Vieira P; Gamboa H
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position-Aware Indoor Human Activity Recognition Using Multisensors Embedded in Smartphones.
    Wang X; Wang Y; Wu J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dataset of inertial measurements of smartphones and smartwatches for human activity recognition.
    Matey-Sanz M; Casteleyn S; Granell C
    Data Brief; 2023 Dec; 51():109809. PubMed ID: 38075620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of smartphone motion sensors for physical activity recognition.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2014 Jun; 14(6):10146-76. PubMed ID: 24919015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UKF Magnetometer-Free Sensor Fusion for Pelvis Pose Estimation During Treadmill Walking.
    Cardarelli S; Mengarelli A; Tigrini A; Strazza A; Di Nardo F; Verdini F; Fioretti S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1213-1216. PubMed ID: 31946111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.
    Della Mea V; Quattrin O; Parpinel M
    Inform Health Soc Care; 2017 Dec; 42(4):321-334. PubMed ID: 28005434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Positioning of Visually Impaired People in Indoor Environments.
    Mahida P; Shahrestani S; Cheung H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.