These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32098084)

  • 1. Developing Nanostructured Ti Alloys for Innovative Implantable Medical Devices.
    Valiev RZ; Prokofiev EA; Kazarinov NA; Raab GI; Minasov TB; Stráský J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological Applications of Severely Plastically Deformed Nano-Grained Medical Devices: A Review.
    Kalantari K; Saleh B; Webster TJ
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33809711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.
    Um HY; Park BH; Ahn DH; Abd El Aal MI; Park J; Kim HS
    J Mech Behav Biomed Mater; 2017 Apr; 68():203-209. PubMed ID: 28187320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.
    Serra G; Morais L; Elias CN; Semenova IP; Valiev R; Salimgareeva G; Pithon M; Lacerda R
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4197-202. PubMed ID: 23910333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superfunctional Materials by Ultra-Severe Plastic Deformation.
    Edalati K
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process.
    Kim TN; Balakrishnan A; Lee BC; Kim WS; Dvorankova B; Smetana K; Park JK; Panigrahi BB
    J Mater Sci Mater Med; 2008 Feb; 19(2):553-7. PubMed ID: 17619956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random spectrum fatigue performance of severely plastically deformed titanium for implant dentistry applications.
    Rittel D; Shemtov-Yona K; Lapovok R
    J Mech Behav Biomed Mater; 2018 Jul; 83():94-101. PubMed ID: 29684777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance.
    Hua P; Xia M; Onuki Y; Sun Q
    Nat Nanotechnol; 2021 Apr; 16(4):409-413. PubMed ID: 33479541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Element Modeling for Virtual Design to Miniaturize Medical Implants Manufactured of Nanostructured Titanium with Enhanced Mechanical Performance.
    Kazarinov N; Stotskiy A; Polyakov A; Valiev RZ; Enikeev N
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone histocompatibility of surface modified nitinol memory alloy by coating titanium-niobium alloy].
    Wang A; Li Y; Zhou H; Peng J; Guo Q; Xu W; Zhao B; Tian Y; Wang X; Yuan M; Lu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jul; 24(7):797-800. PubMed ID: 20695374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure.
    Figueroa CG; Jacobo VH; Cortés-Pérez J; Schouwenaars R
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution.
    Li J; Li SJ; Hao YL; Huang HH; Bai Y; Hao YQ; Guo Z; Xue JQ; Yang R
    Acta Biomater; 2014 Jun; 10(6):2866-75. PubMed ID: 24583159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy.
    Park CH; Lee CS; Kim YJ; Jang JH; Suh JY; Park JW
    Clin Oral Implants Res; 2011 Jul; 22(7):735-742. PubMed ID: 21121961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Stoichiometry on Shape Memory Properties and Functional Stability of Ti⁻Ni⁻Pd Alloys.
    Hattori Y; Taguchi T; Kim HY; Miyazaki S
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30857131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructuring of metals by severe plastic deformation for advanced properties.
    Valiev R
    Nat Mater; 2004 Aug; 3(8):511-6. PubMed ID: 15286754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties, structural and texture evolution of biocompatible Ti-45Nb alloy processed by severe plastic deformation.
    Panigrahi A; Sulkowski B; Waitz T; Ozaltin K; Chrominski W; Pukenas A; Horky J; Lewandowska M; Skrotzki W; Zehetbauer M
    J Mech Behav Biomed Mater; 2016 Sep; 62():93-105. PubMed ID: 27179768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface studies of coarse-grained and nanostructured titanium implants.
    Korotin DM; Bartkowski S; Kurmaev EZ; Neumann M; Yakushina EB; Valiev RZ; Cholakh SO
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8567-72. PubMed ID: 23421245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.