These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32098084)
21. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications. Qiu KJ; Liu Y; Zhou FY; Wang BL; Li L; Zheng YF; Liu YH Acta Biomater; 2015 Mar; 15():254-65. PubMed ID: 25595472 [TBL] [Abstract][Full Text] [Related]
22. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants. Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870 [TBL] [Abstract][Full Text] [Related]
23. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture. Liu H; Niinomi M; Nakai M; Hieda J; Cho K J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494 [TBL] [Abstract][Full Text] [Related]
24. From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion. Afonso CRM; Amigó A; Stolyarov V; Gunderov D; Amigó V Sci Rep; 2017 Oct; 7(1):13618. PubMed ID: 29051519 [TBL] [Abstract][Full Text] [Related]
25. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729 [TBL] [Abstract][Full Text] [Related]
26. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering. Kesteven J; Kannan MB; Walter R; Khakbaz H; Choe HC Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():226-31. PubMed ID: 25491981 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications. Zhang Y; Chu K; He S; Wang B; Zhu W; Ren F Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110165. PubMed ID: 31753354 [TBL] [Abstract][Full Text] [Related]
28. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Nagase T; Iijima Y; Matsugaki A; Ameyama K; Nakano T Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110322. PubMed ID: 31761171 [TBL] [Abstract][Full Text] [Related]
29. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? Cordeiro JM; Barão VAR Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1201-1215. PubMed ID: 27987677 [TBL] [Abstract][Full Text] [Related]
30. A new look at biomedical Ti-based shape memory alloys. Biesiekierski A; Wang J; Gepreel MA; Wen C Acta Biomater; 2012 May; 8(5):1661-9. PubMed ID: 22326786 [TBL] [Abstract][Full Text] [Related]
31. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys. Berezina A; Monastyrska T; Davydenko O; Molebny O; Polishchuk S Nanoscale Res Lett; 2017 Dec; 12(1):220. PubMed ID: 28340530 [TBL] [Abstract][Full Text] [Related]
32. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Hieda J Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686 [TBL] [Abstract][Full Text] [Related]
33. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy. Didier P; Piotrowski B; Fischer M; Laheurte P Mater Sci Eng C Mater Biol Appl; 2017 May; 74():399-409. PubMed ID: 28254310 [TBL] [Abstract][Full Text] [Related]
34. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Iijima M; Endo K; Yuasa T; Ohno H; Hayashi K; Kakizaki M; Mizoguchi I Angle Orthod; 2006 Jul; 76(4):705-11. PubMed ID: 16808581 [TBL] [Abstract][Full Text] [Related]
35. Design considerations for a novel shape-memory-plate osteosynthesis allowing for non-invasive alteration of bending stiffness. Krämer M; Müller CW; Hermann M; Decker S; Springer A; Overmeyer L; Hurschler C; Pfeifer R J Mech Behav Biomed Mater; 2017 Nov; 75():558-566. PubMed ID: 28858665 [TBL] [Abstract][Full Text] [Related]
36. High-pressure torsion for new hydrogen storage materials. Edalati K; Akiba E; Horita Z Sci Technol Adv Mater; 2018; 19(1):185-193. PubMed ID: 29511396 [TBL] [Abstract][Full Text] [Related]
37. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Zhang E; Wang X; Chen M; Hou B Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1210-21. PubMed ID: 27612819 [TBL] [Abstract][Full Text] [Related]
38. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices. Liu H; Niinomi M; Nakai M; Cho K; Narita K; Şen M; Shiku H; Matsue T Acta Biomater; 2015 Jan; 12():352-361. PubMed ID: 25449914 [TBL] [Abstract][Full Text] [Related]
39. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. Fintová S; Kunz L J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295 [TBL] [Abstract][Full Text] [Related]
40. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Kamrani S; Fleck C Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]