These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32098239)

  • 21. Developing a portable gait cycle detection system using an inertial sensor and evaluating the accuracy of the gait cycle detection.
    Park MH; Kwak KY; Kim DW
    Technol Health Care; 2015; 24 Suppl 1():S69-76. PubMed ID: 26409541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty.
    Bravi M; Gallotta E; Morrone M; Maselli M; Santacaterina F; Toglia R; Foti C; Sterzi S; Bressi F; Miccinilli S
    Gait Posture; 2020 Feb; 76():175-181. PubMed ID: 31862666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice.
    Dobkin BH; Martinez C
    Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and Assessment of Artificial Intelligence-Empowered Gait Monitoring System Using Single Inertial Sensor.
    Zhou J; Mao Q; Yang F; Zhang J; Shi M; Hu Z
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces.
    Van Hamme T; Garofalo G; Argones RĂșa E; Preuveneers D; Joosen W
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis.
    Petraglia F; Scarcella L; Pedrazzi G; Brancato L; Puers R; Costantino C
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):265-280. PubMed ID: 30311493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults.
    Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485
    [No Abstract]   [Full Text] [Related]  

  • 28. Evaluating the feasibility of two post-hoc correction techniques for mitigating posture-induced measurement errors associated with wearable motion capture.
    Leineweber MJ; Gomez Orozco MD; Andrysek J
    Med Eng Phys; 2019 Sep; 71():38-44. PubMed ID: 31285135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of BMI on Gait Characteristics of Young Adults: 3D Evaluation Using Inertial Sensors.
    Rosso V; Agostini V; Takeda R; Tadano S; Gastaldi L
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inertial Sensor-Based Gait Recognition: A Review.
    Sprager S; Juric MB
    Sensors (Basel); 2015 Sep; 15(9):22089-127. PubMed ID: 26340634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ambulatory Human Gait Phase Detection Using Wearable Inertial Sensors and Hidden Markov Model.
    Liu L; Wang H; Li H; Liu J; Qiu S; Zhao H; Guo X
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis.
    Lee K; Tang W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.
    Wu Z; Zhang J; Chen K; Fu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible Piezoelectric Sensor-Based Gait Recognition.
    Cha Y; Kim H; Kim D
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensor Type, Axis, and Position-Based Fusion and Feature Selection for Multimodal Human Daily Activity Recognition in Wearable Body Sensor Networks.
    Badawi AA; Al-Kabbany A; Shaban HA
    J Healthc Eng; 2020; 2020():7914649. PubMed ID: 32587667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEMS Inertial Sensors Based Gait Analysis for Rehabilitation Assessment via Multi-Sensor Fusion.
    Qiu S; Liu L; Zhao H; Wang Z; Jiang Y
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: a scoping review.
    Small SR; Bullock GS; Khalid S; Barker K; Trivella M; Price AJ
    BMJ Open; 2019 Dec; 9(12):e033832. PubMed ID: 31888943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.